
Chasing Shadows:
Pitfalls in LLM Security Research

Jonathan Evertz∗ †, Niklas Risse∗ ‡, Nicolai Neuer§, Andreas Müller¶, Philipp Normann∥,
Gaetano Sapia‡, Srishti Gupta#, David Pape†, Soumya Shaw†, Devansh Srivastav†,

Christian Wressnegger§, Erwin Quiring⋄, Thorsten Eisenhofer†, Daniel Arp∥, Lea Schönherr†

† CISPA Helmholtz Center for Information Security ‡ Max Planck Institute for Security and Privacy
§ Karlsruhe Institute of Technology ¶ Ruhr University Bochum ∥ TU Wien

Sapienza University of Rome ⋄ _fbeta

∗ Equal contribution

Abstract—Large language models (LLMs) are increasingly
prevalent in security research. Their unique characteristics, how-
ever, introduce challenges that undermine established paradigms
of reproducibility, rigor, and evaluation. Prior work has identified
common pitfalls in traditional machine learning research, but
these studies predate the advent of LLMs. In this paper, we
identify nine common pitfalls that have become (more) relevant
with the emergence of LLMs and that can compromise the
validity of research involving them. These pitfalls span the entire
computation process, from data collection, pre-training, and fine-
tuning to prompting and evaluation.

We assess the prevalence of these pitfalls across all 72 peer-
reviewed papers published at leading Security and Software Engi-
neering venues between 2023 and 2024. We find that every paper
contains at least one pitfall, and each pitfall appears in multiple
papers. Yet only 15.7% of the present pitfalls were explicitly
discussed, suggesting that the majority remain unrecognized. To
understand their practical impact, we conduct four empirical case
studies showing how individual pitfalls can mislead evaluation,
inflate performance, or impair reproducibility. Based on our
findings, we offer actionable guidelines to support the community
in future work.

I. INTRODUCTION

The intersection of large language models (LLMs) and secu-
rity has become a fast-growing and influential line of research.
Their capacity for easy adaptation and deployment makes
LLMs powerful instruments for security-critical applications,
including vulnerability detection [1]–[4], code analysis [5]–
[8], and automated code repair [9]–[12]. At the same time, it
is crucial to understand their inherent capabilities for resist-
ing attacks: models struggle to distinguish commands from
data [13], to identify context-dependent sensitive content [14],
[15], and are generally vulnerable to prompt injection [16] and
jailbreak attacks [17]. For LLMs to be trusted in critical appli-

cations, both in research and in practice, their implementations
must be rigorous, reproducible, and methodologically sound.

Prior work has identified common pitfalls in traditional
machine learning research [18], [19], offering valuable guid-
ance for designing sound experiments. However, these studies
predate the emergence of modern LLMs. Language mod-
els have fundamentally reshaped the stages of the machine
learning workflow and introduced new risks: data collection
(e. g., poisoning via large-scale web scraping), pre-training
(e. g., inadvertent data leakage), fine-tuning (e. g., reliance on
synthetic data), prompt engineering (e. g., context sensitivity),
and evaluation (e. g., unstable API behavior). As a result,
previous studies [18], [19] do not fully capture the complexity
and fragility of current LLM practices.

In this paper, we bridge this gap by identifying nine pitfalls
that commonly occur in LLM security research. These pitfalls
span the entire development pipeline of LLMs. They reflect
both structural changes in how models are built and used, as
well as the unique challenges introduced by the scale, opacity,
and natural language interface of LLMs. Some pitfalls are
entirely new, such as model collapse caused by training on
synthetic data or unpredictable model behavior due to prompt
sensitivity. Others represent familiar concerns, such as data
leakage or spurious correlations, but their implications change
and intensify in the context of LLMs.

To assess how widespread these pitfalls are, we conducted
a prevalence study across all LLM-centric research papers
(72 in total) published between January 2023 and December
2024 at leading conferences in Security (IEEE S&P, NDSS,
ACM CCS, and USENIX Security Symposium) and Software
Engineering (IEEE/ACM ICSE, ACM ISSTA, ACM FSE, and
IEEE/ACM ASE). With a team of 15 researchers, we collabo-
ratively developed detailed labeling guidelines and reviewed
each paper independently using a systematic and uniform
agreement process.

To our surprise, every paper in our study contains at
least one of the nine identified pitfalls as part of its main
contribution. Five pitfalls, namely Data Leakage (P3), Context
Truncation (P6), Prompt Sensitivity (P7), Surrogate Fallacy

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241749
www.ndss-symposium.org

ar
X

iv
:2

51
2.

09
54

9v
2

 [
cs

.C
R

]
 1

5
D

ec
 2

02
5

https://arxiv.org/abs/2512.09549v2

Data Collection
and Labeling Pre-Training Fine-tuning

and Alignment Prompt Engineering Evaluation

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Large Language Model Pipeline

P1 P4P3 P6 P8

P2 P5 P7 P9

Data Poisoning

Label Inaccuracy

Model CollapseData Leakage

Spurious
Correlations

Context
Truncation

Prompt
Sensitivity

Surrogate
Fallacy

Model
Ambiguity

Not Present Does Not Apply Unclear From Text Likely Present Partly Present Present

Fig. 1: Typical LLM pipeline, divided into its key stages. Each stage can introduce LLM-specific pitfalls that may distort
evaluation, inflate reported performance, or undermine reproducibility. Colors indicate the prevalence of each pitfall according
to our prevalence study (§III).

(P8), and Model Ambiguity (P9), appear in more than 20%
of the papers. Prevalence also varies across research topics:
papers on Vulnerability Repair and Detection show the highest
average rate of pitfalls per paper (23–28%), while studies on
Fuzzing and Secure Code Generation contain fewer pitfalls on
average (15–18%).

Beyond identifying prevalence, we conduct four case studies
that experimentally demonstrate how the identified pitfalls
can mislead evaluation, inflate performance, or hinder repro-
ducibility. Concretely, we examine the impact of (i) Model
Ambiguity—snapshot versions and quantization affect robust-
ness against jailbreaks and significantly alter precision/recall,
thereby affecting reproducibility; (ii) Data Leakage—leaking
20% of test data into the fine-tuning process raises the F1
score by ≈ 0.08–0.11 with increases that grow almost linearly
as leakage increases; (iii) Context Truncation—about 49%
of vulnerable functions exceed common context windows
of 512 tokens (29% > 1024 tokens), removing essential
information and distorting evaluation; (iv) Model Collapse—
recursive self-training in code generation increases perplexity
across generations, leading to degradation and instability.

Based on our results, we provide concrete guidelines and
recommendations for each identified pitfall. Importantly, our
goal is not to assign blame. Pitfalls can occur in carefully
conducted research, often without being explicitly recognized.
Our aim is to support the community by raising awareness and
offering actionable recommendations.

Contributions. We make the following key contributions:
• Identification of LLM pitfalls. We identify nine pitfalls

that frequently arise in LLM-based security research
spanning the entire computation pipeline from data col-
lection to evaluation. We describe each pitfall, explain
why it occurs, and discuss its potential impact on validity
and reproducibility.

• Prevalence study. We assess the prevalence of all nine
pitfalls across 72 peer-reviewed papers published between
January 2023 and December 2024 at leading Security and
Software Engineering venues. We find that every paper
suffers from at least one pitfall.

• Impact analysis. We conduct four case studies that em-
pirically demonstrate how individual pitfalls can distort
evaluation, inflate performance metrics, or compromise
reproducibility.

• Guidelines and recommendations. We present guide-
lines and recommendations for each identified pitfall and
maintain a living appendix containing up-to-date informa-
tion on best practices for preventing pitfalls, accessible at
https://llmpitfalls.org.

We provide all code, datasets, and complete reproduction in-
structions at https://github.com/dormant-neurons/llm-pitfalls.

II. PITFALLS ACROSS THE LLM PIPELINE

Research on pitfalls in machine learning is not new. Prior
work has systematically analyzed common failure modes in
traditional pipelines [18], [19]. While related in spirit, the
pitfalls we investigate arise from the specific characteristics of
LLM research. Our aim is not to replicate existing analyses,
but to complement them with a targeted examination of
challenges that are unique to or substantially intensified in
LLMs.

LLMs have significantly changed the way machine learning
systems are trained, adapted, and evaluated. Their development
pipelines involve multiple interdependent stages: large-scale
data collection and labeling, pre-training, fine-tuning, prompt
design, and evaluation. In the following sections, we outline
the structure of this pipeline and describe the potential practi-
cal risks that can arise at each stage. This discussion forms the

2

https://llmpitfalls.org
https://github.com/dormant-neurons/llm-pitfalls

foundation for the nine pitfalls we identify. Figure 1 illustrates
the overall pipeline and the corresponding pitfalls.

A. Stage 1: Data Collection and Labeling

LLMs require large-scale datasets to train effectively, often
relying on content scraped from the Internet, which is far more
extensive and noisy than the more curated datasets used in
classical machine learning.

P1—Data Poisoning via Internet Scraping. The sheer scale
of this data makes curation increasingly difficult, creating
favorable conditions for Data Poisoning. Without sufficient
precautions, data scraped from the Internet opens the door
to data poisoning attacks, where malicious or biased content
can be subtly inserted into the training data without detection.
Although not new to machine learning, the scale of LLMs
exacerbates this risk. Platforms like GitHub or Reddit, where
anyone can anonymously upload data, make it especially
difficult to ensure quality and safety at scale.

P2—LLM-generated Label Inaccuracy. At the same time,
the demand for labeled data during fine-tuning and evaluation
has led to the widespread use of models themselves to generate
labels, a practice known as LLM-as-a-judge [20]. Although
this approach can address the problem of generating labels in
scenarios in which human-curated labeling is time-intensive
or costly, it also introduces the risk of Label Inaccuracy.

The reliability of experimental results depends heavily on
the quality of data and labeling. Since learning-based methods
rely on accurate labels, any label errors or instabilities can
degrade performance. This is particularly relevant when LLMs
are used for automated annotation, where outputs may appear
correct yet still contain subtle flaws.

B. Stage 2: Pre-Training

LLMs are typically pre-trained on large-scale datasets to
capture general language patterns. Because these corpora are
often assembled from broad internet scrapes with limited
transparency, they increase the risk of data leakage.

P3—Data Leakage. Many model providers no longer disclose
detailed information about the data used for training. For
instance, GPT-4 was trained on “a variety of licensed, created,
and publicly available data sources” [21], [22], without further
specification. This lack of transparency increases the risk
of Data Leakage, where evaluation data may inadvertently
overlap with training inputs.

While creating traditional machine learning models with
disjoint data splits is straightforward, the nature of LLMs com-
plicates this. As LLMs require massive datasets, fine-tuning
foundational models is a widespread practice. Foundational
models may have been trained on (a subset of) samples from
the test set. This risk is particularly high in LLMs, where
many datasets overlap with pre-training sources like GitHub,
Wikipedia, and Reddit [23], [24].

C. Stage 3: Fine-tuning and Alignment

During fine-tuning or alignment, LLMs are adapted for spe-
cific downstream tasks and user-facing behaviors. In this stage,
models become particularly susceptible to issues where eval-
uation data may inadvertently overlap with pre-training data,
as well as the reliance on synthetic or LLM-generated data.

P4—Model Collapse via Synthetic Training Data. Fine-
tuning and alignment frequently rely on data that was
itself generated by LLMs, introducing the risk of Model
Collapse [25].

LLMs require vast amounts of data, and this need has
increased substantially. To address data scarcity, synthetic data
generated by other LLMs is frequently used. However, training
on such data can lead to less diverse outputs, higher error rates,
and model collapse over generations. While countermeasures
exist, they are difficult to implement in practice [26]–[28].

P5—Spurious Correlations/Unrelated Features. Addition-
ally, Spurious Correlations, already known as an issue in tradi-
tional ML, becomes especially problematic for LLMs because
their massive parameter space allows them to memorize and
exploit subtle, non-causal patterns.

Spurious correlations are artifacts that correlate with task
labels but are not actually related to the underlying task. Such
features may arise from selection bias in the training data or
from shortcuts the model learns using unrelated patterns. This
can lead to misleading performance and poor generalization.

D. Stage 4: Prompt Engineering

Prompting has emerged as a new form of control in LLMs.
It effectively acts as a tunable hyperparameter that controls
the model’s behavior, and its design can influence the model’s
outputs and overall performance.

P6—Context Truncation. An LLM’s context size refers to
the maximum number of tokens it can process at once.
Because LLMs are stateless, all relevant information must be
included in the current context. If inputs exceed this limit,
they are truncated, potentially omitting critical information and
reducing performance.

P7—Prompt Sensitivity. Prompting also introduces the issue
of Prompt Sensitivity, where minor changes in phrasing can
lead to drastically different outputs and where different models
can have distinct prompt preferences.

Language models are often fine-tuned to follow instruction-
based inputs with specific formatting styles. While this allows
the language model to adapt to desired tasks during runtime,
the performance and functionality of the model also rely on the
quality of the instructions and the correct input format. This
results in differences across evaluations if inputs are formatted
for a specific LLM but evaluated on other models, or are not
expressive enough for the task [29], [30].

3

E. Stage 5: Evaluation

As LLMs are often accessed through APIs and web in-
terfaces, with several distinct model versions that differ in
architecture, parameter count, or quantization. This ambiguity
creates risks in reproducing results, as identifying the precise
model instance becomes difficult or even infeasible.

P8—Proxy/Surrogate Fallacy. A single model name, such as
ChatGPT, may refer to multiple underlying snapshots with dif-
ferent architectures, sizes, or quantization levels. This creates
the risk of the Proxy/Surrogate Fallacy, where conclusions
are drawn from models that are not representative of those
actually used.

New LLMs are released frequently, driving the race for
the “most state-of-the-art” model. These models vary in size
and task specialization. Although models of the same class
often share architecture and training data, differences in size
or context window can significantly affect performance and
behavior. Discrepancies are even greater across model classes,
for example, between the open-source Llama models [31]–[33]
and the commercial GPT family [34]. Without experimental
validation, it is generally not possible to make claims between
different model sizes and families.

P9—Model Ambiguity. The ambiguity of different archi-
tectures, sizes, or quantization levels also leads to Model
Ambiguity risks, where determining the exact model instance
used to reproduce a result is difficult or even impossible.

Both open-source models on platforms like Huggingface
[35] and proprietary models like ChatGPT [34], Claude [36],
or Gemini [37] are regularly updated. Minor updates are
often noted only in changelogs and may not result in a new
major version. A single model specifier can therefore refer
to different internal versions. Because even small changes
in tokenizers or system prompts can affect model behavior,
specifying the exact snapshot (e. g., endpoint version, commit
ID, or access date) is essential. For open-source models, the
quantization level is often an additional source of variation
and should be specified (cf., §IV-A).

III. PREVALENCE OF PITFALLS

Having identified nine pitfalls specific to the LLM compu-
tation pipeline, we now assess how frequently these issues ap-
pear in current LLM security research. We begin by outlining
the paper selection process that underpins our study (§III-A) as
well as the methodology used to evaluate each paper (§III-B).
We then present the results per pitfall (§III-C), followed by a
broader discussion (§III-D).

A. Paper Collection

As the basis for our study, we consider papers published
between January 2023 and December 2024 at leading confer-
ences in Security and Software Engineering.

• For Security, we consider the IEEE Symposium on Se-
curity and Privacy (IEEE S&P), the Network and Dis-
tributed System Security Symposium (NDSS), the ACM

Vulnerability Detection (15)

22.2%

Vulnerability Repair (6)

8.3%

Fuzzing (8)

11.2%Secure Code Generation (5)

5.6%

Security in LLM (24)

33.3%

GenAI Safety (14)

19.4%

Fig. 2: Distribution of the 72 selected papers across topics.
The top half, light blue segments () represent research that
uses LLMs to address security problems. The bottom half,
dark blue segments () correspond to research focused on the
security and safety of LLMs themselves.

Conference on Computer and Communications Security
(ACM CCS), and the USENIX Security Symposium.

• For Software Engineering, we consider the IEEE/ACM
International Conference on Software Engineering
(IEEE/ACM ICSE), the ACM International Conference
on the Foundations of Software Engineering (ACM
FSE), the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ACM ISSTA), and the
IEEE/ACM International Conference on Automated Soft-
ware Engineering (IEEE/ACM ASE).

For all conferences, we scraped the full set of papers
and applied a two-stage filtering process to identify relevant
studies, as detailed next.

Selection Criteria. To identify relevant papers, we establish
two primary selection criteria centered on the use of LLMs in
security-relevant contexts. Specifically, papers were considered
in scope if they (1) evaluate the security or safety of LLMs, or
(2) apply LLMs to security-related tasks such as vulnerability
detection or secure code generation. Importantly, the use of the
LLM had to be integral to a paper’s methodology, meaning the
core contribution would not have been possible in its current
form without them.

To guide the search, we define a list of LLM-relevant key-
words: LLM, LLMs, large language model, language model,
GPT, ChatGPT, transformer, pre-trained, foundation model,
prompt, learning. We applied these keywords to search the
titles and abstracts of all papers published in the selected
venues using multiple specialized tools for literature search:
IEEE Xplore Advanced Search1, ACM DL Advanced Search2,
and Google Scholar Advanced Search3.

This process yielded over 1.000 candidate papers, which
we manually reviewed for relevance. As a first step, we
excluded papers that clearly did not fit our scope. For example,
we removed the software engineering paper Large Language

1IEEE Xplore Advanced Search
2ACM DL Advanced Search
3Google Scholar Advanced Search

4

https://ieeexplore.ieee.org/search/advanced
https://dl.acm.org/search/advanced
https://scholar.google.com/

Models are Few-Shot Summarizers: Multi-Intent Comment
Generation via In-Context Learning [38], which focuses on
code summarization without any direct security aspect. Sec-
ond, all remaining abstracts, and when necessary, the full texts,
were manually reviewed to assess whether each paper met the
inclusion criteria.

Selected Papers. Our collection process resulted in a final
set of 72 papers. These papers span a wide range of topics
within the field of language models and security: Security
in LLM [39]–[62], Vulnerability Detection [1]–[3], [63]–[74],
Generative AI Safety [75]–[88], Fuzzing [4], [89]–[95], Secure
Code Generation [96]–[99], and Vulnerability Repair [9]–[12],
[100], [101]. Figure 2 provides an overview of the distribution
of papers across these categories.

B. Reviewing Methodology

To guide the review process, we developed a detailed set
of guidelines to ensure consistency across reviewers. These
guidelines define how to identify each pitfall and provide
instructions on interpreting relevant cues within the papers.
To refine the guidelines, we conducted a pilot review on a
small subset of papers. This process helped clarify ambiguous
cases and improve reviewer instructions. See Appendix B for
the final version of our guidelines.

Labeling Scheme. For each of the nine pitfalls, reviewers
assigned one of several labels reflecting its applicability and
presence. A pitfall is marked as Does not apply () if it is
outside the scope for the particular paper, or as Unclear from
text () when the paper lacks sufficient detail to support a
clear judgment. If the pitfall is applicable but not present, it is
labeled as Not present (). We use Partly present () to indicate
that the pitfall affects only a part of the paper’s methodology.
A pitfall was marked as Present () when it appears throughout
the paper. Finally, in case there is a high likelihood of a pitfall’s
presence but no explicit evidence, we use Likely present ().
For example, take the case of potential data leakage where
the evaluation dataset was publicly available online before the
training-data cutoff of a model that has been trained on web-
scale data. In such cases, we cannot prove that the evaluation
data were included during training, but their presence is highly
plausible due to timing and accessibility. This process is
summarized in Figure 6 in the Appendix.

It is important to note that some pitfalls may be difficult
or impossible to avoid. Therefore, for any pitfall labeled as
Likely present, Partly present, or Present, we also annotated
whether the presence of the pitfall was discussed in the paper.
This distinction helps recognize good practice in transparently
acknowledging potential limitations or contextualizing the rel-
evance of a pitfall’s presence. For example, Label Inaccuracy
(P2) may be unavoidable in large-scale evaluations where
labeling is expensive, or Data Leakage (P3) may be difficult
to address due to limited access to the original training data
of proprietary models.

Reviewing Phases. The review was conducted by a team
of fifteen researchers with backgrounds in security, machine

learning, and software engineering. Every paper was assigned
to exactly two reviewers, aiming to match papers with review-
ers whose expertise aligns closely with the paper’s topic. To
ensure consistency and rigor throughout the review process,
we structured the evaluation into three phases:

Phase 1: Individual Reviews. In the first phase, each reviewer
independently assessed their assigned papers using the pre-
defined guidelines. Reviewers were blinded to each other’s
assessments to ensure independent judgment.

Phase 2: Review Discussions. In the second phase, reviewers
discussed each paper to resolve differences from their initial
assessments. Disagreements were clarified through 1-on-1
sessions or, when needed, group discussions (see Phase 3). For
each pitfall, we recorded both the initial and final decisions.

Phase 3: Group Discussions. For cases where consensus could
not be reached, we escalated the discussion to a larger group.
These sessions included ten of the fifteen reviewers and served
to resolve especially ambiguous or borderline cases.

C. Pitfall Prevalence

We now present the results of our prevalence study. As
discussed above, we begin by examining each pitfall individu-
ally, summarizing how frequently it occurs across the reviewed
papers and highlighting potential implications. In the following
section (§III-D), we broaden the discussion to consider general
patterns and shared challenges across pitfalls.
P1—Data Poisoning via Internet Scraping. A dataset used
to train a model is collected from the internet without strategies
to verify the integrity and safety of the data [102].

Present in 3 papers (0 discussed)

Results & Implications. Although this pitfall was Present in
4.2% (3) and Likely present in 23.6% (17) of the papers, none
acknowledged or discussed the risk of training on potentially
poisoned internet data. This is especially concerning given
recent work demonstrating that even minimal amounts of poi-
son can compromise LLM behavior [103]–[105]. In security-
relevant settings, this can result in unsafe code suggestions or
behavior misalignment triggered by crafted inputs.
P2—LLM-generated Label Inaccuracy. LLMs are used to
annotate data with certain labels via classification or LLM-as-
a-judge procedures without further validation of correctness.

Present in 8 papers (5 discussed)

Results & Implications. This pitfall was Present in 15.3%
(8) of the papers (five of which discussed the pitfall), Partly
present in 8.3% (6) of the papers (four of which discussed
it), and Likely present in 1.4% (1) of the papers. While not

5

among the most common pitfalls overall, 60% of relevant cases
showed a relatively high awareness by discussing the issue.
Nonetheless, unvalidated LLM-generated labels can distort
results and lead to faulty conclusions. This is especially
relevant in areas like jailbreak detection, where LLMs are
often used as judges and external validation is critical to
ensure correctness.

P3—Data Leakage. An LLM is trained or fine-tuned with
data that is normally not available in practice, or the training
data is contaminated with possible test data [106].

Present in 15 papers (7 discussed)

Results & Implications. Data Leakage is highly prevalent:
65.2% (47) of the papers either contain it or are likely affected
by it. Specifically, Data Leakage is Present in 20.8% (15) of
the papers (of which seven explicitly discuss the pitfall), Partly
present in 6.9% (5) of the papers (two of which discussed the
pitfall), and Likely present in another 37.5% (27) of the papers
(one of which discussed the pitfall). This raises concerns about
inflated performance metrics, as models may memorize rather
than generalize. Even state-of-the-art LLMs like GPT have
suffered from such issues in tasks like code completion and
vulnerability detection [107].

P4—Model Collapse via Synthetic Training Data. An
LLM is trained on data that is generated by other language
models, risking an amplification of bias and degradation of
data quality [25], [108], [109].

Present in 10 papers (0 discussed)

Results & Implications. Although this pitfall was Present
in 13.9% (10) of the papers, none of the papers in our
study acknowledged or discussed the risk of using synthetic
LLM-generated training data. Shumailov et al. have demon-
strated a decrease in model performance when trained on
synthetic data, making the performance tied to the LLMs
training data [25]. Thus, training on LLM-generated data risks
inheriting specific behaviors, biases, and errors [110]. This
can undermine generalization, particularly in tasks such as
code generation, potentially distorting results and degrading
performance. Notably, for 37.5% (27) of papers, this pitfall
Does not apply, as they do not involve model training.

P5—Spurious Correlations/Unrelated Features. The LLM
adapts to unrelated artifacts from the problem space instead
of generalizing onto the actual task [111].

Present in 4 papers (1 discussed)

Results & Implications. This pitfall appears in 31% of papers:
Present in 5.6% (4) of the papers (one of which discussed
the pitfall), Likely present in 23.6% (17) of the papers, and
Partly present in 1.4% (1) of the papers (which discussed it).
Notably, it is discussed explicitly in only two papers. Due
to the complexity of tasks and potentially black-box settings
in which LLMs are deployed, Spurious Correlations often
remain unidentified. This not only distorts experimental results
but also leads to drawing false conclusions and using LLMs
in scenarios for which they are not suited. In the security
domain, for example, LLMs for vulnerability detection were
unable to distinguish between vulnerable functions and the
same functions that had been patched. The dependence on
unrelated features led to top scores on benchmarks, even after
removing the code structure itself [112].
P6—Context Truncation. The LLM’s context size is not
large enough for its intended task, and the input needs to be
truncated.

Present in 14 papers (6 discussed)

Results & Implications. While not as prevalent as Data Leak-
age, context limitations remain a notable pitfall: 33.3% papers
(24) were affected, either marked as Present in 19.4% of the
papers (14, 6 of which discussed the pitfall), Partly Present
in 5.5% of the papers (4, all of which discussed the pitfall),
or Likely present in 8.3% of the papers (6, none of which
discussed the pitfall). This is especially relevant in tasks like
vulnerability detection [112] or prompt-based attacks [17],
where long inputs are common. A limited context size can
cause models to overlook key information or distort evaluation
results.
P7—Prompt Sensitivity. The prompt used to instruct the
language models is fixed for all models and experiments, or
is not expressive enough for the given task. This allows for
prompt-based fluctuations in evaluations.

Present in 13 papers (3 discussed)

Results & Implications. Prompt Sensitivity affected 23 pa-
pers (31.9%) in our analysis: Present in 18.1% (13) of the
papers (3 of which discussed the pitfall), Likely present in
6.9% (5) of the papers, and Partly present in 6.9% (5) of
the papers (2 of which discussed it). If prompt formatting is
not adapted to the model, e.g., by using incorrect delimiters
or generic instructions, this can reduce model performance
or lead to misleading evaluations. In tasks such as jailbreak
detection or alignment testing, vague prompts (e.g., “You are
a helpful AI assistant”) may underrepresent a model’s true
capabilities or vulnerabilities. As a result, evaluations might
miss important failure modes or overstate alignment, leading
to flawed comparisons across models [113].

6

P8—Proxy/Surrogate Fallacy. Findings from specific LLMs
are often inappropriately generalized to other, often larger and
more capable models or even to entire classes of language
models, without sufficient empirical validation.

Present in 14 papers (3 discussed)

Results & Implications. Surrogate Fallacy is highly prevalent,
appearing in 47.2% (34) of the papers: Present in 19.4% (14)
papers (3 of which discussed the pitfall), Partly present in
26.4% (19) of the papers (2 of which discussed it), and 1 paper
is marked as Likely present. Due to the distinct differences in
behavior, claims about specific LLMs do not generalize to
other models. Especially in security, where attacks and de-
fenses hinge on specific model behavior, extrapolating results
from smaller open-source models to larger proprietary ones is
methodologically flawed and risks overstating generalizability.

P9—Model Ambiguity. The model details are insufficient for
precise identification, preventing reproducibility (e. g., missing
model ID, snapshot, commit ID, quantization level).

Present in 53 papers (0 discussed)

Results & Implications. This is the most prevalent pitfall
in our study: It was Present in 73.6% (53) of all papers,
and Partly present in 12.5% (9). Notably, none of them
acknowledged or discussed this issue, indicating a low level
of community awareness. The lack of precise versioning
details makes it nearly impossible to reproduce results reliably.
Vendors frequently update LLMs to improve reliability or
harden them against attacks, changes that can alter behavior
without changing the model name. Similarly, quantization
variants in open-source models can produce different outputs
due to reduced precision. Microsoft highlighted this in the case
of Phi3mini4k, where a major update significantly improved
benchmarks; they published results for both versions and
documented the relevant commit [114], [115].

D. Main Findings

Every pitfall occurs in multiple papers, and every paper
contains at least one pitfall that is either fully or partly present
(cf. Figure 7 in the Appendix for a side-by-side comparison
of all pitfalls). The most common issues, present in over 20%
of papers, are Data Leakage (P3), Context Truncation (P6),
Model Ambiguity (P9), Prompt Sensitivity (P7), and Surrogate
Fallacy (P8). We analyze the impact of four of these in §IV.

Furthermore, for three pitfalls, namely Data Leakage (P3),
Data Poisoning (P1), and Spurious Correlations (P5), the
Likely present label applies to more than 20% of papers, which
means that the pitfall was probably present despite the absence
of explicit evidence.

Vulnera
bilit

y Rep
air

Vulnera
bilit

y Dete
cti

on

Secu
rity

in
LLM

Gen
AI Safe

ty

Secu
re

Code Gen
era

tio
n

Fuzzi
ng

0

10

20

30

A
ve

ra
ge

Pi
tfa

ll
Pr

es
en

ce
(%

)

Fig. 3: Percentage of pitfalls labeled as Present (including
cases where the pitfall was discussed), averaged over all pit-
falls and papers within each topic. Light blue bars () represent
research that uses LLMs to address security problems. Dark
blue () bars correspond to research focused on the security
and safety of LLMs themselves.

Finding. Every paper in our study contains at least one
pitfall that is either fully or partly present.

Discussed vs. Not Discussed. Overall, only 15.71% of pitfalls
rated at least Likely present (Likely present, Partly present, or
Present) were discussed by the authors of the papers. The three
most frequently discussed pitfalls were Label Inaccuracy (P2)
with 60.0%, Context Truncation (P6) with 41.67%, and Data
Leakage (P3) with 21.28% of cases being explicitly addressed.
In contrast, some pitfalls received no discussion at all: Model
Collapse (P4), Data Poisoning (P1), and Model Ambiguity
(P9), indicating a lack of awareness of these issues.

Finding. Only 15.71% of pitfalls are discussed, with three
pitfalls (Model Collapse via Synthetic Training Data (P4),
Data Poisoning via Internet Scraping (P1), and Model
Ambiguity (P9)) remaining entirely undiscussed across all
papers in our study.

Topics. We further analyze the prevalence of pitfalls across
the six research topics defined in our paper selection process.
Figure 3 shows the average percentage of pitfalls per paper
within each topic. This reflects the proportion of pitfalls
labeled as Present, including those where the pitfall was
discussed.

The results show notable differences across topics. Vul-
nerability Repair papers stand out with the highest average
pitfall presence (27.78%), followed by Vulnerability Detection
(23.70%), indicating a high density of pitfalls in work that uses
LLMs to find or fix software vulnerabilities. At the other end,
Fuzzing exhibits the lowest pitfall presence (15.28%). Secure

7

Code Generation averages 17.78%, suggesting this subfield
is comparatively more robust with respect to the pitfalls we
assessed. Research under Security in LLMs (19.91%) and
GenAI Safety (19.84%) are close to 20%.

Finding. LLM-based research on Vulnerability Detection
and Vulnerability Repair has the highest average number
of pitfalls, whereas Secure Code Generation and Fuzzing
papers tend to avoid such issues more consistently.

IV. IMPACT ANALYSIS

Having assessed the prevalence of pitfalls, we now examine
their potential impact in greater detail. To this end, we focus
on four of the most prevalent pitfalls identified in §III, each of
which appears in at least 20% of the papers. Specifically, we
examine the impact of Model Ambiguity and the Surrogate
Fallacy (§IV-A), the influence of Data Leakage on experimen-
tal results (§IV-B), and the limitations that Context Truncation
imposes on model capabilities (§IV-C).

Together, these pitfalls illustrate the broader risks they pose
to the integrity and reliability of LLM research. Another issue
that appears in over 20% of the reviewed papers is Prompt
Sensitivity. While important, Prompt Sensitivity has already
been extensively studied in prior work (e.g., [29], [113]). For
this reason, we do not provide a separate analysis here. Instead,
we consider Model Collapse (§IV-D), which has received little
attention in the security context so far but has recently been
shown to degrade model reliability in the text domain [25]. We
argue that understanding the potential implications for security
research is necessary, especially as fine-tuned or retrained
models become increasingly common.

A. Model Ambiguity & Surrogate Fallacy

The most widespread issue in our analysis is Model Ambi-
guity, which is present in 73.6% of all papers. To examine the
potential impact of this pitfall on experimental results, we first
conduct a targeted evaluation of hate speech detection using
state-of-the-art proprietary LLMs across multiple snapshots
of the same base model. We then evaluate the robustness
of proprietary models against prompt-based attacks across
different model snapshots, as well as that of open-source
models with varying levels of quantization. In this context,
we also examine the impact of another common pitfall, the
Surrogate Fallacy, which appears in 47% of the papers.

1) Hate Detection: In the first experiment, we analyze the
impact of (missing) LLM version or snapshot information for
the example of hate speech detection. To this end, we revisit
a recently proposed method to prevent waves of hateful com-
ments that often build up for a particular topic, as happened,
for instance, during the COVID-19 pandemic on X (formerly
Twitter) [116]. The core idea is to use an LLM to benefit
from its enhanced reasoning capabilities, as detecting hate
with all its nuances and newly introduced derogatory terms
is a challenging task. Given a text, the LLM is instructed to
answer a series of questions designed to guide its reasoning
process.

Experimental Setup. We re-implement the experiments from
Vishwamitra et al. [116] with their pre-labeled dataset of
hateful and normal tweets from X. This dataset contains tweets
from three polarizing topics termed hate waves (COVID-19
pandemic, US Capitol insurrection, and Russia’s invasion of
Ukraine). The COVID-19 pandemic is further divided into
subtopics, from which we focus on the “vaccine” subtopic.
The calibration and testing for each topic are done separately,
with each hate wave divided into four quarters. For simplicity,
we calibrate the detection method using examples from the
first quarter and test on the second quarter of each wave.
The original publication stated the use of GPT-4. Thus, we
test three GPT-4 snapshots available at OpenAI at the time of
writing.

The detection is done by extracting keywords using Key-
BERT and testing the novelty with NLTK’s WordNet. Detailed
specifications for all models can be found in Table VI of
Appendix E-A. We then provide the text and the extracted
targets and terms to the LLM gpt-4.1-mini-2025-04-14 and
instruct it to check which keywords are a target or derogatory
term. Equipped with these new targets and terms, the prompt
template from the original work [116] is used, which instructs
an LLM to answer a series of questions to determine if a text
is hateful or not. The extracted targets and terms are appended
at the end of the prompt. Finally, we evaluate the LLM on the
test set to decide on each posting and record this as its final
decision.

Results. Table I demonstrates that the detection performance
varies considerably across the different GPT snapshots.

TABLE I: Model Ambiguity in Hate Detection

Model Accuracy Precision Recall

gpt-4-0613 88.70% 87.07% 82.05%
gpt-4-0125-preview 77.16% 95.52% 41.03%
gpt-4.1-2025-04-14 82.45% 88.07% 61.54%

An analysis of the LLM outputs suggests a shift in how dif-
ferent AI models classify hate speech. We exemplify this using
the tweet “Say it to my face, you tide pod eating, unvaccinated
fuck”, which was labeled as hate in the dataset. The gpt-4-
0613 model identifies derogatory and insulting words directed
at anti-vaxxers and therefore categorizes the text as identity
hate. In contrast, gpt-4.1-2025-04-14 also recognizes the text’s
insulting content but determines that the language does not
meet the threshold for identity hate, as it does not incite
violence or hatred. The model considers the text as toxic only.
In general, this observation is also reflected in the precision
and recall rates in Table I. The models gpt-4-0125-preview
and gpt-4.1-2025-04-14 flag fewer tweets as hateful due to
the higher threshold for hate, resulting in a significant drop in
the recall rate. At the same time, the precision increases due to
the stricter detection. While it is likely that such behavior can
be adjusted through more tailored prompting, our aim with this
experiment is to highlight the considerable, underestimated
impact of the LLM version.

8

TABLE II: Attack success rates (ASR) across different quantization levels, inference engines (if applicable), and model
architectures. Each configuration is evaluated using 16 prompt-based attacks, evenly distributed across a total of 1,000 trials.

Model Quantization

2-bit 3-bit 4-bit 5-bit 6-bit 8-bit No Quant.

CodeLlama 7b (Ollama) 69.52% 40.95% 15.49% 18.61% 15.69% 14.29% 18.21%
CodeLlama 7b (TheBloke) 67.35% 70.41% 58.16% 62.24% 61.22% 63.27% 19.39%

Llama 2 7b (Ollama) 1.61% 8.05% 4.02% 6.04% 6.64% 5.73% 6.14%
Llama 2 7b (TheBloke) 13.88% 17.35% 29.59% 25.51% 7.24% 6.64% 11.22%

Llama 3.1 8b (Ollama) 32.33% 22.59% 16.87% 18.37% 11.35% 10.04% 21.18%

2) LLM Robustness: We continue by evaluating the ro-
bustness of several LLMs against a suite of prompt-based
attacks, including prompt injections, adversarial suffixes, and
complex jailbreaks [14]. To do this, we adopt the secret-
key game introduced by Evertz et al. [14]. In this setup, the
model is given a secret key in its system prompt, along with
explicit instructions to keep the key confidential. The attack
then attempts to elicit the secret from the model. If the model
outputs the key as part of its response, the attack is considered
successful. Each model is evaluated over 1,000 attack attempts,
distributed evenly across 16 attack types. To minimize bias,
system prompts are sampled from a set of 1,000 randomly
selected variations.

We first examine proprietary models across multiple snap-
shots. As in the previous case, it is common to refer to
these models by general handles (e. g., GPT-4o), but these
labels may internally refer to different model snapshots. As
of the time of writing, we evaluate all available snapshots of
OpenAI’s GPT-3.5 Turbo, GPT-4, GPT-4 Turbo, and GPT-4o.

In contrast to proprietary models, open-source models are
typically not accessed through APIs and therefore do not
expose versioned snapshots under the same identifier. Instead,
on platforms such as Huggingface [35] and Ollama [117],
they are provided in different variations of quantization, and
older snapshots can be accessed via their commit history.
To complement the snapshot-based evaluation of proprietary
models, we analyze how quantization affects robustness in
open-source models. We test various quantization levels (2-bit
through 8-bit) as well as the original unquantized snapshots.
We evaluate three models (CodeLlama-7b [118], Llama-2-
7b [31], and Llama3.1 8b [32]) and two different inference
engines (Ollama [117] and TheBloke [119]). Detailed specifi-
cations for all models are listed in Table VII in Appendix E-A.

Results. Table III presents the results for different snapshots
of OpenAI’s GPT. We observe that different snapshots lead to
meaningful differences in robustness. In particular, GPT-3.5
Turbo exhibits significant variability across snapshots, though
smaller but still notable differences are visible for the other
models as well. The effect of different quantization levels is
summarized in Table II. Interestingly, models with stronger
quantization, such as 2-bit and 3-bit, appear more vulnerable
to prompt-based attacks. Additionally, the results indicate a
difference between inference engines. Note that these results
not only demonstrate the potentially severe impact of the

Model Ambiguity pitfall, but also serve as an example for
the Surrogate Fallacy, since they show that findings do not
necessarily transfer to other and particular larger models.

TABLE III: Attack success rate (ASR) across snapshots of
current OpenAI models evaluated on 16 different prompt-
based attacks over 1,000 iterations per snapshot in total.

Model ASR

GPT-3.5 Turbo
↪→ gpt-3.5-turbo-1106 4.63%
↪→ gpt-3.5-turbo-0125 16.11%

GPT-4 Turbo
↪→ gpt-4-1106-preview 1.81%
↪→ gpt-4-0125-preview 2.13%
↪→ gpt-4-turbo-2024-04-09 2.31%

Model ASR

GPT-4
↪→ gpt-4-0314 9.56%
↪→ gpt-4-0613 8.05%

GPT-4o
↪→ gpt-4o-2024-05-13 1.01%
↪→ gpt-4o-2024-08-06 0.10%
↪→ gpt-4o-2024-11-20 0.20%

Overall, these findings highlight the importance of reporting
detailed model information, including snapshot identifiers and
quantization parameters. Such details are essential for the
reproducibility and interpretability of experimental results.
The observations are further supported by recent disclosures
from Microsoft, showing that performance-relevant updates
are being applied to their hosted models on Huggingface. For
example, the Phi 3 mini 4k instruct model received an update
together with a full disclosure about its new performance
scores4.

B. Data Leakage

We continue with the analysis of another very prevalent
pitfall, Data Leakage, which occurs in 57% of all papers we
considered. LLMs are typically trained on broad snapshots of
public internet data collected up to a fixed cutoff date [120].
This practice introduces a critical concern: public benchmark
datasets used to evaluate model performance may have been
included in the training data, thereby undermining the validity
of such evaluations.

To examine this issue, we focus on vulnerability detection as
a representative task within LLM security research. It is widely
studied, relies on well-known datasets, and is commonly used
to benchmark the capabilities of code-oriented LLMs. We first
conduct a controlled experiment designed to simulate leakage
under lab conditions, followed by an empirical analysis of
commercial models.

4https://huggingface.co/microsoft/Phi-3-mini-4k-instruct; see Release
Notes and June 2024 Update

9

https://huggingface.co/microsoft/Phi-3-mini-4k-instruct

1) Leakage in Lab Setting: We consider three widely
used vulnerability detection datasets: Devign [121], Diverse-
Vul [122], and PrimeVul [123]. For each dataset, we construct
splits for training (60%), validation (20%) and testing (20%),
and fine-tune a CodeT5+ [124] model. Finally, we evaluate
each model on the test split to obtain a baseline F1-score.

To simulate leakage, we fine-tune five additional models
per dataset for 10 epochs, each trained on an increasingly
larger fraction of the test set added to the training data (20%,
40%, 60%, 80%, 100%). We deliberately ignore the effects
of limited context window size (512 tokens) and potential
spurious correlations, as these factors apply equally across
all data splits and do not affect the relative comparison. Full
model configurations are provided in Appendix E-C.

Results. The results are depicted in Figure 4. We observe
a near-linear increase in F1-score with the degree of test
set leakage. Even a modest leakage of 20% leads to a gain
of 0.08–0.11 over the baseline. This demonstrates that even
partial leakage can significantly inflate evaluation metrics,
leading to overly optimistic conclusions.

2) Evaluation on Commercial LLMs: Having observed the
effects of leakage under controlled conditions, we now turn to
the question of whether similar effects can be found in propri-
etary LLMs. The main challenge in this setting is the lack of
transparency regarding the training data and procedures used
for these models. To investigate this, we focus on the PrimeVul
[123] dataset. It consists of real-world vulnerabilities in public
C/C++ projects, making it a plausible candidate for inclusion
in the pre-training data of proprietary models. We evalu-
ate four proprietary models from different vendors (gpt-3.5-
turbo-0125, gpt-4o-2024-08-06, DeepSeek-V3-0324, claude-3-
5-haiku-20241022) as well as three open-source models (meta-
llama-3-8b-instruct, qwen3-14b, qwen2.5-coder-14b). For all
evaluations, we set the temperature to 0. Detailed model
information is available in Appendix E-C.

For each model, we conduct the following two experiments:
(1) We sample 100 commits from the dataset, extract the
original commit messages, and prompt the model with the
project name, commit SHA, and the first half of the message,
asking it to reconstruct the full commit message. (2) We repeat
this process, using 100 sampled functions. We provide the
same context, but instead of the commit message, we prompt
the model with the first half of the function body and ask it
to reconstruct the complete function.

Results. Surprisingly, none of the models successfully recon-
structed a single commit message. Even allowing for fuzzy
matching (≥ 75% word-level Jaccard similarity), all models
yielded 0 out of 100 matches. The function completion task
showed the same pattern: no exact or fuzzy matches across any
of the models. To rule out the possibility that the alignment
procedures may suppress memorization, we fine-tune gpt-
3.5-turbo-0125 on 1,000 full commit messages (following
the divergence attack from Carlini et al. [125]). Despite this
targeted fine-tuning, the model still failed to reproduce any of
the original messages.

0% 20% 40% 60% 80% 100%
0.6

0.7

0.8

0.9

1

Leakage Percentage

F1
Sc

or
e

(F
ul

l
Te

st
)

Devign DiverseVul PrimeVul

Fig. 4: F1-scores of CodeT5+ models fine-tuned on Devign,
DiverseVul, and PrimeVul with varying amounts of test data
(0–100%) leaked into the training data.

To investigate whether these commits may have been absent
from the model’s pre-training data, we searched all Common
Crawl snapshots listed in the GPT-3 paper [120] for any URLs
related to the repositories used in PrimeVul (with wildcards).
We found no matches. While we cannot rule out the use of
private or proprietary data sources, the absence of PrimeVul-
related content in Common Crawl suggests that PrimeVul-style
data was likely not part of the pre-training mix.

These findings are somewhat unexpected, given that Prime-
Vul contains data from many of the most prominent and widely
used open-source C/C++ projects on GitHub. Nonetheless, we
found no evidence that any of the tested models were trained
on PrimeVul commits or functions.

Discussion. This finding is both surprising and encouraging.
Despite the prominence of the underlying projects in Prime-
Vul, we find no evidence that the evaluated proprietary and
open-source models were trained on these. While we cannot
definitively rule out the possibility of data leakage, the results
provide strong evidence that data leakage is unlikely in this
case. To support future evaluations and reduce the risk of
leakage, we recommend the following: Ideally, test data should
be drawn entirely from after the model’s training cut-off date.
In this case, it can be used with high confidence. If the test
data spans both before and after the cut-off, a pre/post probing
analysis can help: a significant drop in performance on the
post cut-off portion may indicate the absence of leakage.
If the test data predates the cut-off or if timing is unclear,
targeted memorization probes can be performed as done in our
reconstruction experiments. To aid this evaluation, Table XI
in the Appendix summarizes publicly disclosed training data
sources for several representative language models.

C. Context Truncation

Next, we shift our focus to prompting, specifically the
issue of limited context windows. This pitfall appears in 28%
of the reviewed papers. To this end, we examine how con-
strained context length can affect the reliability of performance
measurements and potentially lead to misleading conclusions.

10

More specifically, our goal is to understand whether limited
context during training or evaluation can prevent a model
from detecting vulnerabilities, thereby producing misleading
performance results. For instance, CVE-2014-26695 illustrates
a case where the line responsible for an integer overflow lies
outside a 512-token context window; hence, a model would
be unable to detect it since the full context is not available.

Experimental Setup. Among the 15 papers on vulnerability
detection included in our study, we observe that eight papers
use at least one model with a context size of 512 tokens or
less, one paper uses a model with a 1024-token context size,
and eight papers use at least one model with a context size
larger than 2048 tokens.

To assess whether these context sizes are sufficient, we
analyze function lengths in the datasets used in §IV-B. Using
the CodeT5 [126] tokenizer, we compute the number of tokens
for each function labeled as vulnerable. We then calculate the
proportion of functions in each dataset that exceed context
limits of 512, 1024, and 2048 tokens. This allows to quantify
the proportion of functions that are partially truncated under
typical context size assumptions. Further details on the tok-
enizer are provided in Appendix E-D.

Results. We find that a substantial proportion of vulnerable
functions exceed the context sizes used in papers on vulnera-
bility detection in our study. As shown in Table IV, on average,
49.3% of all vulnerable functions across Devign, DiverseVul,
and PrimeVul contain more than 512 tokens when tokenized
with the CodeT5 tokenizer. At the 1024-token threshold,
29.1% still exceed the limit, and 13.7% surpass 2048 tokens.

These findings show that using limited context windows
systematically truncates a large portion of vulnerable func-
tions, potentially removing the very code that contains or
explains the vulnerability. As such, evaluation under small
context settings may fundamentally misrepresent a model’s
performance and lead to misleading conclusions about its
ability to detect vulnerabilities. Notably, these percentages
represent a lower bound on the issue; Risse et al. [112] show
that vulnerability detection often depends on code outside the
function itself, meaning even full-function context may be
insufficient in many cases.

TABLE IV: Proportion of functions labeled as vulnerable
whose CodeT5-tokenized length exceeds context-window sizes
used in the papers on vulnerability detection identified by our
pitfall study (512, 1,024, and 2,048 tokens).

Dataset # Funcs # Tokens

> 512 > 1024 > 2048

Devign 12,460 5,196 (41.7%) 2,642 (21.2%) 984 (7.9%)
DiverseVul 18,945 9,814 (51.8%) 5,835 (30.8%) 2,747 (14.5%)
PrimeVul 6,004 3,897 (64.9%) 2,594 (43.2%) 1,357 (22.6%)

Average – 52.8% 31.7% 15.0%

100 101 102 103 104 105

Perplexity

10−5

10−4

10−3

10−2

10−1

100

Pr
ob

ab
ili

ty

Generation 0
Generation 1
Generation 2
Generation 3
Generation 4
Generation 5
Generation 6
Generation 7
Generation 8
Generation 9

Fig. 5: Distribution of perplexities for training samples gener-
ated across multiple model generations. Perplexity is measured
using the original model fine-tuned on real data. Both the
mean and variance of perplexity increase over generations,
suggesting that models become less stable when repeatedly
trained on synthetic data.

D. Model Collapse

Finally, we consider another important aspect of LLM
training: the potential effects of model collapse, which we
found to be present in 13.9% of the papers. Repeated training
on synthetic data, particularly content generated by models,
can gradually degrade model quality, amplify existing biases,
and reduce output diversity [25].

Experimental Setup. We build on the setup introduced by
Shumailov et al. [25], who studied model collapse in natural
language generation. Code generation is more challenging than
generating natural language text, as source code is subject
to stricter syntactic and semantic constraints. For this exper-
iment, we use the Qwen2.5-Coder-0.5B-Instruct [127], [128]
model (full configuration details are provided in Table VIII
in Appendix E-B) and consider training sequences with a
fixed length of 128 tokens in line with the setup from Shu-
mailov et al. [25].

We begin by fine-tuning the base model on the self-oss-
instruct-sc2-exec-filter-50k [129], [130] dataset, which con-
tains 50,000 Python code samples. For each sequence, we
predict up to 2,048 subsequent tokens to generate synthetic
samples, ensuring that no code sample is truncated or incom-
plete. These synthetic outputs form a new dataset of equal
sample size, which is then used to fine-tune the next model
iteration. We repeat this process for ten generations, where
each model is trained on data generated by its immediate
predecessor. Although it cannot be ruled out that the base
model is trained on (subsets) of this dataset, the experiment’s
primary focus is on the re-training on LLM-generated data.
Hence, a possible data leakage would not affect the results.

Results. Figure 5 shows the distribution of perplexities across
generations, measured by evaluating each generation’s outputs

5https://nvd.nist.gov/vuln/detail/CVE-2014-2669; see Appendix E-D

11

https://nvd.nist.gov/vuln/detail/CVE-2014-2669

using the fine-tuned base model. Generation 0 refers to the
fine-tuned base model evaluated on the unmodified training
data. Generation 1 corresponds to the synthetic outputs from
the first-generation model, and so on.

We observe a clear trend of degradation in model perfor-
mance. With each generation, the distribution shifts to the
right, indicating increased perplexity and suggesting that the
base model becomes increasingly uncertain when predicting
tokens in samples produced by later generations. We also
observe growing variance in perplexity across generations, re-
flecting greater instability in models trained on synthetic data,
and indicating that errors accumulate over time. Furthermore,
models trained primarily on synthetic outputs fail to generalize
effectively.

These results extend prior concerns raised by Shu-
mailov et al. [25] to the code domain. Our findings suggest that
similar degradation can occur in code-related applications as
well. This trend is especially concerning as AI-powered coding
assistants become more widespread and, thus, an increasing
share of source code may be generated by models rather than
written by humans. From a security perspective, this trend also
poses a serious risk. For example, when the underlying models
are used for code generation, their reliability may degrade over
time, potentially introducing subtle bugs or vulnerabilities.
Similarly, when such models are used for, e.g., vulnerability
detection, the degradation of the model may result in a lower
detection rate.

V. RECOMMENDATIONS

Our analysis reveals a concerning pattern: every reviewed
paper suffers from at least one pitfall, and each pitfall appears
in multiple papers. In the following, we propose recommen-
dations that directly target the pitfalls while considering real-
world constraints such as the use of proprietary systems,
limited access to training data, and computational limitations.

We provide an extended discussion covering each pitfall
individually in Appendix C. In addition to this discussion, we
offer a project website with guidelines to avoid pitfalls and
a living appendix where all information is open for further
contributions and kept up to date. The website is available at
https://llmpitfalls.org.

R1: Transparency and Reproducibility. Transparent report-
ing and reproducibility are crucial in research. Even if full
reproducibility is not always feasible, especially with propri-
etary APIs, researchers should share enough information to
enable others to interpret, replicate, or critically evaluate the
findings.

We recommend the following reporting practices:
• Specify the exact model used, including version iden-

tifier, access method (e.g., API or interface), and ac-
cess date. For open-source models, include repository
links, commit hashes, and any fine-tuning steps that
were taken. Describe the evaluation pipeline in detail,
including prompt format, quantization level, decoding
settings, and any post-processing. As shown in §IV-A,

missing or vague model details can lead to substantial
variation in outcomes and hinder reproducibility (−→
Model Ambiguity (P9)).

• If evaluation labels are generated by language models or
if LLMs are used as judges, disclose this and assess label
quality via manual review on a statistically meaningful
subset. Report inter-annotator agreement where applica-
ble (−→ LLM-generated Label Inaccuracy (P2)).

• Avoid generalizing beyond what the evidence supports.
Claims should be scoped to the specific models evaluated
unless a diverse and representative set of models is tested
and limitations are explicitly acknowledged (−→ Proxy/-
Surrogate Fallacy (P8)).

R2: Understand and Communicate Data Quality. Data
plays a central role in both training and evaluation of lan-
guage models. Whether data is synthetic, scraped, or manu-
ally labeled, its origin, quality, and security can significantly
influence model behavior and reported results.

To mitigate these risks, we recommend:
• When using synthetic or LLM-generated data for training,

clearly report its proportion relative to real data and assess
distributional differences. In iterative self-training setups,
monitor for signs of model collapse or performance
degradation. As demonstrated in §IV-D, iterative training
on synthetic data can lead to significant performance
decline and instability over time (−→ Model Collapse
via Synthetic Training Data (P4)).

• For tasks with realistic poisoning threats, such as vulner-
ability detection or misinformation detection, explicitly
assess whether poisoning is plausible in the training
setup, particularly when relying on large-scale web data
or proprietary models (−→ Data Poisoning via Internet
Scraping (P1)).

• Acknowledge any risk of data leakage by checking
whether evaluation data (especially answers or labels)
was publicly available prior to the model’s training cutoff
date. Where cutoff dates are known, analyze performance
on pre- vs. post-cutoff data and consider probing for
memorization. We demonstrate the impacts of potential
data leakage in §IV-B. Whenever possible, prefer models
for which information about training data composition
is available (see Table XI). As a community, we should
push for state-of-the-art models with transparent or public
training data. While this is often not possible for propri-
etary models, ongoing regulatory efforts such as the EU
AI Act’s transparency requirements for General-Purpose
AI (GPAI) providers [131] are expected to improve
disclosure practices (−→ Data Leakage (P3)).

R3: Alignment between Models and Tasks. Many evaluation
failures stem not from the models themselves, but from a
mismatch between the model constraints and the task require-
ments. Researchers should assess whether the models used are

12

https://llmpitfalls.org

capable of handling the inputs, outputs, and task complexity
involved and report limitations clearly.

To that end:
• Report the model’s maximum context window and an-

alyze whether typical input sizes (including prompts)
exceed this limit. If truncation occurs frequently, quantify
how often and assess the potential impact on perfor-
mance. Detailed evaluation of possible side effects of a
too small context size is given in §IV-C (−→ Context
Truncation (P6)).

• Recognize that prompt design can meaningfully influence
model behavior. When feasible, use established prompt-
ing techniques or conduct prompt variation experiments
to gauge robustness. If prompt optimization is not appli-
cable, explain why (−→ Prompt Sensitivity (P7)).

• Evaluate whether the model may be exploiting spurious
correlations. Use robustness checks (e.g., input perturba-
tions, ablations) or feature attribution techniques to test
whether the model relies on unintended features (−→
Spurious Correlations/Unrelated Features (P5)).

VI. DISCUSSION

Our study provides a systematic analysis of common pitfalls
in LLM security research. However, like any such effort, it
is not without limitations. In the following, we reflect on
potential threats to validity and the generalizability of our
findings, as well as the broader implications of the issues we
uncovered.

Addressing Inevitable Pitfalls. Some pitfalls in LLM re-
search are difficult to avoid due to the inherent complexity and
scale of current systems. The vast amount of data required to
train LLMs introduces inherently challenging-to-manage risks.
For example, Data Poisoning attacks (P1), although realistic
in principle, are challenging to detect and mitigate, especially
when experiments rely on publicly available data. Similarly,
the lack of transparency from LLM providers regarding train-
ing corpora increases the likelihood of Data Leakage (P3).
In addition, the complexity and often opaque behavior of
LLMs can lead to Spurious Correlations (P5) that are difficult
to identify or explain. Although these issues cannot always
be fully resolved (see §V for possible mitigation strategies),
researchers must acknowledge, address, and ideally explicitly
discuss such pitfalls when reporting their findings.

Coverage of Literature and Pitfalls. Our paper selection may
not be exhaustive. Relevant work may have been missed due
to limitations in our keyword filters or because it appeared
outside the selected venues. To reduce this risk, we conducted
an intentionally broad search across eight leading security and
software engineering conferences, used an extensive keyword
list, and applied a two-stage manual selection process. This
resulted in 72 in-scope papers. While omissions remain pos-
sible, we believe they are unlikely to affect our qualitative
conclusions.

Likewise, other pitfalls may exist beyond the nine we
identified for our study. We iteratively refined our pitfall list
and definitions during test reviews with a diverse reviewing
team to limit this threat. We encourage future work to build
on and extend this taxonomy.

Review Subjectivity. While some degree of subjectivity is
unavoidable in qualitative reviews, we took several steps
to improve consistency. Each paper was reviewed by two
independent reviewers, who were blinded during the first phase
of evaluation. We then conducted a structured discussion phase
to reconcile disagreements.

To quantify inter-reviewer consistency, we computed Fleiss’
κ for each pitfall. Overall agreement was solid, with a mean
κ of 0.55 across all pitfalls. Out of 648 individual ratings
(72 papers × 9 pitfalls), only 25 required resolution through
discussion in the larger reviewer group. This corresponds to
less than 5% of all decisions. Most disagreements were minor
and resolved through brief conversations between reviewers.
Full κ values and qualitative interpretations are reported in
Table V in the Appendix.

Generalizability of the Impact Analysis. Our experimental
study focuses on four case studies and five selected pitfalls,
covering key stages of the LLM pipeline. Thus, four pitfalls
remain unexplored in the experimental analysis, and even for
the five chosen ones, their impact may vary across tasks,
datasets, and model families. We emphasize that the impact
analysis aims to demonstrate plausible mechanisms and con-
crete examples rather than provide generalizable effect sizes.
As such, the results should be interpreted as illustrative lower
bounds, not as comprehensive or definitive impact measures.

VII. CONCLUSION

In this work, we systematically reviewed 72 papers from
leading security and software engineering conferences and
identified nine recurring pitfalls in LLM security research.
Every paper we considered contained at least one of these
pitfalls, and each pitfall appeared across multiple studies.
Our impact analysis shows how seemingly minor issues, such
as Data Leakage, Context Truncation, or Model Ambiguity,
can distort results, reduce reliability, and undermine repro-
ducibility. Together, these findings highlight the broader risks
these pitfalls pose to the integrity of LLM security research
and underscore the need for more rigorous, transparent, and
reproducible practices.

Looking ahead, strengthening LLM security research in-
volves applying the lessons we outline: reporting exact model
identifiers, testing for leakage, using task-appropriate context
sizes, verifying LLM-generated labels, and avoiding over-
generalization. Our guidelines are not meant to serve as a
fixed checklist. However, by treating these pitfalls as design
constraints rather than afterthoughts, the community can move
from “chasing shadows” to conducting LLM security research
that is reproducible, trustworthy, and grounded in evidence.

13

ETHICAL CONSIDERATIONS

This work critically examines methodological patterns in
LLM security research. To ensure transparency while min-
imizing the risk of reputational harm, we cite all sources
transparently but report pitfalls in aggregate. We deliberately
refrain from assigning specific pitfalls to individual papers.
Corresponding authors of the analyzed work are welcome to
contact us for private discussion and clarification.

Our aim is constructive. Alongside our critique, we provide
concrete, community-oriented guidelines to support more rig-
orous, transparent, and reproducible practices in LLM-focused
security research.

ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC 2092 CASA – 390781972
and under the project ALISON (492020528), the Vienna
Science and Technology Fund (WWTF) under the project
BREADS (10.47379/VRG23011), the Helmholtz Association
(HGF) within the topic "46.23 Engineering Secure Systems",
the German Federal Ministry of Education and Research under
the grant AIgenCY (16KIS2012) and SisWiss (16KIS2330),
the European Research Council (ERC) under the consolidator
grant MALFOY (101043410), and the LCIS center VW-Vorab-
2025, ZN4704 11-76251-2055. Additionally, Srishti Gupta
was enrolled in the Italian National Doctorate on AI run by
the Sapienza University of Rome in collaboration with the
University of Cagliari during this project.

REFERENCES

[1] A. Stafeev, T. Recktenwald, G. D. Stefano, S. Khodayari, and G. Pel-
legrino, “Yurascanner: Leveraging llms for task-driven web app scan-
ning.” in NDSS. The Internet Society, 2025.

[2] Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and
Y. Liu, “Gptscan: Detecting logic vulnerabilities in smart contracts
by combining gpt with program analysis,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering,
ser. ICSE ’24. Association for Computing Machinery, 2024.

[3] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang,
Y. Liu, M. Pinzger, and S. Rass, “PentestGPT: Evaluating and har-
nessing large language models for automated penetration testing,” in
33rd USENIX Security Symposium (USENIX Security 24). USENIX
Association, 2024.

[4] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang,
“Fuzz4All: Universal Fuzzing with Large Language Models,” in Pro-
ceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ser. ICSE ’24. Association for Computing Machinery,
2024.

[5] C. Fang, N. Miao, S. Srivastav, J. Liu, R. Zhang, R. Fang, Asmita,
R. Tsang, N. Nazari, H. Wang, and H. Homayoun, “Large language
models for code analysis: Do LLMs really do their job?” in 33rd
USENIX Security Symposium (USENIX Security 24), 2024.

[6] X. Zhou, S. Cao, X. Sun, and D. Lo, “Large language model for
vulnerability detection and repair: Literature review and the road
ahead,” 2024 IEEE/ACM 46th International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER, 2025.

[7] L. Derczynski, E. Galinkin, J. Martin, S. Majumdar, and N. Inie. (2024)
garak: A Framework for Security Probing Large Language Models.

[8] M. D. Purba, A. Ghosh, B. J. Radford, and B. Chu, “Software
vulnerability detection using large language models,” in 2023 IEEE
34th International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2023.

[9] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “ Ex-
amining Zero-Shot Vulnerability Repair with Large Language Models
,” in 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 2023.

[10] X. Zhou, K. Kim, B. Xu, D. Han, and D. Lo, “Out of sight, out of
mind: Better automatic vulnerability repair by broadening input ranges
and sources,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE ’24. Association for
Computing Machinery, 2024.

[11] S. B. Hossain, N. Jiang, Q. Zhou, X. Li, W.-H. Chiang, Y. Lyu,
H. Nguyen, and O. Tripp, “A deep dive into large language models
for automated bug localization and repair,” Proc. ACM Softw. Eng.,
2024.

[12] J. Zhang, C. Wang, A. Li, W. Wang, T. Li, and Y. Liu, “Vuladvisor:
Natural language suggestion generation for software vulnerability re-
pair,” in Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’24. Association for
Computing Machinery, 2024.

[13] E. Zverev, S. Abdelnabi, S. Tabesh, M. Fritz, and C. H. Lampert,
“Can LLMs separate instructions from data? and what do we even
mean by that?” in The Thirteenth International Conference on Learning
Representations, 2025.

[14] J. Evertz, M. Chlosta, L. Schönherr, and T. Eisenhofer, “Whispers in
the machine: Confidentiality in agentic systems,” CoRR, 2024.

[15] R. Hankache, K. N. Acheampong, L. Song, M. Brynda, R. Khraishi,
and G. A. Cowan, “Evaluating the sensitivity of llms to prior context,”
2025.

[16] Y. Liu, Y. Jia, R. Geng, J. Jia, and N. Z. Gong, “Formalizing and
benchmarking prompt injection attacks and defenses,” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024.

[17] Z. Yu, X. Liu, S. Liang, Z. Cameron, C. Xiao, and N. Zhang, “Don’t
listen to me: Understanding and exploring jailbreak prompts of large
language models,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024.

[18] D. Arp, E. Quiring, F. Pendlebury, and A. Warnecke, “Dos and Don’ts
of Machine Learning in Computer Security,” in USENIX Security
Symposium, 2022.

[19] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” CoRR, 2019.

[20] L. Zheng, W. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica,
“Judging llm-as-a-judge with mt-bench and chatbot arena,” in Advances
in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

[21] OpenAI, “Gpt-4 system card,” 2023, system card.
[22] ——, “Gpt-4 technical report,” 2023.
[23] Golem.de. (2025) Künstliche intelligenz: Reddit verklagt anthropic.

https://www.golem.de/news/kuenstliche-intelligenz-reddit-verklagt-
anthropic-2506-196895.html.

[24] O. Nickel. (2024) Answers: Reddit testet KI-suche. https://www.golem.
de/news/answers-reddit-testet-ki-suche-2412-191572.html.

[25] I. Shumailov, Z. Shumaylov, Y. Zhao, and N. Papernot, “AI models
collapse when trained on recursively generated data,” Nature, 2024.

[26] N. Gillman, M. Freeman, D. Aggarwal, C.-H. Hsu, and C. Luo,
“Self-correcting self-consuming loops for generative model training,”
in Proceedings of the 41st International Conference on Machine
Learning, 2024.

[27] Y. Kossale, M. Airaj, and A. Darouichi, “Mode collapse in generative
adversarial networks: An overview,” in 2022 8th International Confer-
ence on Optimization and Applications (ICOA), 2022.

[28] S. Alemohammad, J. Casco-Rodriguez, L. Luzi, A. I. Humayun,
H. Babaei, D. LeJeune, A. Siahkoohi, and R. Baraniuk, “Self-
consuming generative models go MAD,” in The Twelfth International
Conference on Learning Representations, 2024.

[29] B. Cao, D. Cai, Z. Zhang, Y. Zou, and W. Lam, “On the worst prompt
performance of large language models,” in The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[30] R. Pryzant, D. Iter, J. Li, Y. T. Lee, C. Zhu, and M. Zeng, “Automatic
prompt optimization with ”gradient descent” and beam search,” in
The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

14

https://www.golem.de/news/kuenstliche-intelligenz-reddit-verklagt-anthropic-2506-196895.html
https://www.golem.de/news/kuenstliche-intelligenz-reddit-verklagt-anthropic-2506-196895.html
https://www.golem.de/news/answers-reddit-testet-ki-suche-2412-191572.html
https://www.golem.de/news/answers-reddit-testet-ki-suche-2412-191572.html

[31] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient
foundation language models,” 2023.

[32] M. AI, “Introducing llama 3.1: Our most capable models to date,” Meta
AI Blog, 2024.

[33] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, and A. Kadian, “The
llama 3 herd of models,” CoRR, 2024.

[34] OpenAI. (2025) Openai chatgpt. https://chatgpt.com/.
[35] Huggingface. (2025) Hugging face – the AI community building the

future. https://huggingface.co/.
[36] Anthropic. (2025) Anthropic claude. https://claude.ai/.
[37] Google. (2025) Google gemini. https://gemini.google.com.
[38] M. Geng, S. Wang, D. Dong, H. Wang, G. Li, Z. Jin, X. Mao, and

X. Liao, “Large language models are few-shot summarizers: Multi-
intent comment generation via in-context learning,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering
(ICSE ’24), 2024.

[39] H. Wang, K. Dong, Z. Zhu, H. Qin, A. Liu, X. Fang, J. Wang,
and X. Liu, “Transferable multimodal attack on vision-language pre-
training models,” in 2024 IEEE Symposium on Security and Privacy
(SP), 2024.

[40] Z. Zhang, G. Shen, G. Tao, S. Cheng, and X. Zhang, “On large
language models’ resilience to coercive interrogation,” in 2024 IEEE
Symposium on Security and Privacy (SP), 2024.

[41] J. Liu, Y. Kang, D. Tang, K. Song, C. Sun, X. Wang, W. Lu, and
X. Liu, “Order-disorder: Imitation adversarial attacks for black-box
neural ranking models,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’22.
Association for Computing Machinery, 2022.

[42] A. Naseh, K. Krishna, M. Iyyer, and A. Houmansadr, “Stealing the
decoding algorithms of language models,” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’23. Association for Computing Machinery, 2023.

[43] M. Du, X. Yue, S. S. M. Chow, T. Wang, C. Huang, and H. Sun,
“Dp-forward: Fine-tuning and inference on language models with
differential privacy in forward pass,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’23. Association for Computing Machinery, 2023.

[44] S. Yan, S. Wang, Y. Duan, H. Hong, K. Lee, D. Kim, and Y. Hong, “An
LLM-Assisted Easy-to-Trigger backdoor attack on code completion
models: Injecting disguised vulnerabilities against strong detection,” in
33rd USENIX Security Symposium (USENIX Security 24). USENIX
Association, 2024.

[45] Y. Liu, Y. Jia, R. Geng, J. Jia, and N. Z. Gong, “Formalizing and
benchmarking prompt injection attacks and defenses,” in 33rd USENIX
Security Symposium (USENIX Security 24). USENIX Association,
2024.

[46] R. Zhang, H. Li, R. Wen, W. Jiang, Y. Zhang, M. Backes, Y. Shen, and
Y. Zhang, “Instruction backdoor attacks against customized LLMs,” in
33rd USENIX Security Symposium (USENIX Security 24). USENIX
Association, 2024.

[47] M. Meeus, S. Jain, M. Rei, and Y.-A. de Montjoye, “Did the neurons
read your book? document-level membership inference for large lan-
guage models,” in 33rd USENIX Security Symposium (USENIX Security
24), 2024.

[48] J. Yu, X. Lin, Z. Yu, and X. Xing, “LLM-Fuzzer: Scaling assessment of
large language model jailbreaks,” in 33rd USENIX Security Symposium
(USENIX Security 24). USENIX Association, 2024.

[49] Z. Yu, X. Liu, S. Liang, Z. Cameron, C. Xiao, and N. Zhang, “Don’t
listen to me: Understanding and exploring jailbreak prompts of large
language models,” in 33rd USENIX Security Symposium (USENIX
Security 24). USENIX Association, 2024.

[50] T. Liu, Y. Zhang, Z. Zhao, Y. Dong, G. Meng, and K. Chen, “Making
them ask and answer: Jailbreaking large language models in few queries
via disguise and reconstruction,” in 33rd USENIX Security Symposium
(USENIX Security 24). USENIX Association, 2024.

[51] S. Liu, D. Cao, J. Kim, T. Abraham, P. Montague, S. Camtepe,
J. Zhang, and Y. Xiang, “EaTVul: ChatGPT-based evasion attack
against software vulnerability detection,” in 33rd USENIX Security
Symposium (USENIX Security 24). USENIX Association, 2024.

[52] W. M. Si, M. Backes, Y. Zhang, and A. Salem, “Two-in-One: A model
hijacking attack against text generation models,” in 32nd USENIX

Security Symposium (USENIX Security 23). USENIX Association,
2023.

[53] L. Shen, Y. Pu, S. Ji, C. Li, X. Zhang, C. Ge, and T. Wang,
“Improving the robustness of transformer-based large language models
with dynamic attention,” in NDSS, 2024.

[54] C. Wei, W. Meng, Z. Zhang, M. Chen, M. Zhao, W. Fang, L. Wang,
Z. Zhang, and W. Chen, “Lmsanitator: Defending prompt-tuning
against task-agnostic backdoors,” in NDSS, 2024.

[55] G. Deng, Y. Liu, Y. Li, K. Wang, Y. Zhang, Z. Li, H. Wang, T. Zhang,
and Y. Liu, “Masterkey: Automated jailbreaking of large language
model chatbots,” in NDSS, 2024.

[56] M. Nazzal, I. Khalil, A. Khreishah, and N. Phan, “Promsec: Prompt
optimization for secure generation of functional source code with large
language models (llms),” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’24.
Association for Computing Machinery, 2024.

[57] G. Chen, Z. Qin, M. Yang, Y. Zhou, T. Fan, T. Du, and Z. Xu, “Unveil-
ing the vulnerability of private fine-tuning in split-based frameworks
for large language models: A bidirectionally enhanced attack,” in Pro-
ceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’24. Association for Computing
Machinery, 2024.

[58] X. Shen, Z. Chen, M. Backes, Y. Shen, and Y. Zhang, “"do anything
now": Characterizing and evaluating in-the-wild jailbreak prompts on
large language models,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’24.
Association for Computing Machinery, 2024.

[59] B. Hui, H. Yuan, N. Gong, P. Burlina, and Y. Cao, “Pleak: Prompt
leaking attacks against large language model applications,” in Pro-
ceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’24. Association for Computing
Machinery, 2024.

[60] H. Aghakhani, W. Dai, A. Manoel, X. Fernandes, A. Kharkar,
C. Kruegel, G. Vigna, D. Evans, B. Zorn, and R. Sim, “Trojanpuzzle:
Covertly poisoning code-suggestion models,” in 2024 IEEE Symposium
on Security and Privacy (SP), 2024.

[61] D. Li, M. Yan, Y. Zhang, Z. Liu, C. Liu, X. Zhang, T. Chen,
and D. Lo, “Cosec: On-the-fly security hardening of code llms via
supervised co-decoding,” in Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2024. Association for Computing Machinery, 2024.

[62] J. Chen, Q. Zhong, Y. Wang, K. Ning, Y. Liu, Z. Xu, Z. Zhao, T. Chen,
and Z. Zheng, “Rmcbench: Benchmarking large language models’
resistance to malicious code,” in Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’24. Association for Computing Machinery, 2024.

[63] S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and G. Stringh-
ini, “ LLMs Cannot Reliably Identify and Reason About Security
Vulnerabilities (Yet?): A Comprehensive Evaluation, Framework, and
Benchmarks ,” in 2024 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 2024.

[64] P. Liu, J. Liu, L. Fu, K. Lu, Y. Xia, X. Zhang, W. Chen, H. Weng,
S. Ji, and W. Wang, “Exploring ChatGPT’s capabilities on vulnerability
management,” in 33rd USENIX Security Symposium (USENIX Security
24). USENIX Association, 2024.

[65] Z. Liu, Z. Tang, J. Zhang, X. Xia, and X. Yang, “Pre-training by
predicting program dependencies for vulnerability analysis tasks,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE ’24. Association for Computing
Machinery, 2024.

[66] M. M. Rahman, I. Ceka, C. Mao, S. Chakraborty, B. Ray, and
W. Le, “Towards causal deep learning for vulnerability detection,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE ’24. Association for Computing
Machinery, 2024.

[67] A. Sejfia, S. Das, S. Shafiq, and N. Medvidović, “Toward improved
deep learning-based vulnerability detection,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering,
ser. ICSE ’24. Association for Computing Machinery, 2024.

[68] X.-C. Wen, C. Gao, S. Gao, Y. Xiao, and M. R. Lyu, “Scale:
Constructing structured natural language comment trees for software
vulnerability detection,” in Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2024. Association for Computing Machinery, 2024.

15

https://chatgpt.com/
https://huggingface.co/
https://claude.ai/
https://gemini.google.com

[69] Y. Ding, S. Chakraborty, L. Buratti, S. Pujar, A. Morari, G. Kaiser, and
B. Ray, “Concord: Clone-aware contrastive learning for source code,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2023. Association for
Computing Machinery, 2023.

[70] Y. Zhao, L. Gong, Z. Huang, Y. Wang, M. Wei, and F. Wu, “Coding-
ptms: How to find optimal code pre-trained models for code embedding
in vulnerability detection?” in Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’24. Association for Computing Machinery, 2024.

[71] C. Ni, X. Yin, K. Yang, D. Zhao, Z. Xing, and X. Xia, “Distin-
guishing look-alike innocent and vulnerable code by subtle semantic
representation learning and explanation,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2023.
Association for Computing Machinery, 2023, p. 1611–1622.

[72] M. Eshghie and C. Artho, “Oracle-guided vulnerability diversity and
exploit synthesis of smart contracts using llms,” in Proceedings of
the 39th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’24. Association for Computing Machinery,
2024.

[73] Y. Wu, X. Xie, C. Peng, D. Liu, H. Wu, M. Fan, T. Liu, and H. Wang,
“Advscanner: Generating adversarial smart contracts to exploit reen-
trancy vulnerabilities using llm and static analysis,” in Proceedings of
the 39th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’24. Association for Computing Machinery,
2024.

[74] J. Sun, J. Chen, Z. Xing, Q. Lu, X. Xu, and L. Zhu, “Where is
it? tracing the vulnerability-relevant files from vulnerability reports,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE ’24. Association for Computing
Machinery, 2024.

[75] N. Lukas, A. Salem, R. Sim, S. Tople, L. Wutschitz, and S. Zanella-
Beguelin, “ Analyzing Leakage of Personally Identifiable Information
in Language Models ,” in 2023 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 2023.

[76] X. He, S. Zannettou, Y. Shen, and Y. Zhang, “ You Only Prompt Once:
On the Capabilities of Prompt Learning on Large Language Models to
Tackle Toxic Content ,” in 2024 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 2024.

[77] N. Vishwamitra, K. Guo, F. T. Romit, I. Ondracek, L. Cheng, Z. Zhao,
and H. Hu, “ Moderating New Waves of Online Hate with Chain-
of-Thought Reasoning in Large Language Models ,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society,
2024.

[78] S. S. Roy, P. Thota, K. V. Naragam, and S. Nilizadeh, “From chatbots
to phishbots?: Phishing scam generation in commercial large language
models,” in 2024 IEEE Symposium on Security and Privacy (SP), 2024.

[79] W. M. Si, M. Backes, J. Blackburn, E. De Cristofaro, G. Stringhini,
S. Zannettou, and Y. Zhang, “Why so toxic? measuring and triggering
toxic behavior in open-domain chatbots,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’22. Association for Computing Machinery, 2022.

[80] K. Tang, W. Zhou, J. Zhang, A. Liu, G. Deng, S. Li, P. Qi, W. Zhang,
T. Zhang, and N. Yu, “Gendercare: A comprehensive framework for
assessing and reducing gender bias in large language models,” in Pro-
ceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’24. Association for Computing
Machinery, 2024.

[81] Y. Li, C. Huang, S. Deng, M. L. Lock, T. Cao, N. Oo, H. W. Lim,
and B. Hooi, “KnowPhish: Large language models meet multimodal
knowledge graphs for enhancing Reference-Based phishing detection,”
in 33rd USENIX Security Symposium (USENIX Security 24). USENIX
Association, 2024.

[82] R. Zhang, S. S. Hussain, P. Neekhara, and F. Koushanfar, “REMARK-
LLM: A robust and efficient watermarking framework for generative
large language models,” in 33rd USENIX Security Symposium (USENIX
Security 24). USENIX Association, Aug. 2024.

[83] Z. Lin, J. Cui, X. Liao, and X. Wang, “Malla: Demystifying real-world
large language model integrated malicious services,” in 33rd USENIX
Security Symposium (USENIX Security 24). USENIX Association,
2024.

[84] K. Guo, A. Utkarsh, W. Ding, I. Ondracek, Z. Zhao, G. Freeman,
N. Vishwamitra, and H. Hu, “Moderating illicit online image promotion

for unsafe user generated content games using large Vision-Language
models,” in 33rd USENIX Security Symposium (USENIX Security 24).
USENIX Association, 2024.

[85] L. Niu, S. Mirza, Z. Maradni, and C. Pöpper, “CodexLeaks: Privacy
leaks from code generation language models in GitHub copilot,” in
32nd USENIX Security Symposium (USENIX Security 23). USENIX
Association, 2023.

[86] P. Lv, P. Li, S. Zhu, S. Zhang, K. Chen, R. Liang, C. Yue, F. Xiang,
Y. Cai, H. Ma, Y. Zhang, and G. Meng, “Ssl-wm: A black-box
watermarking approach for encoders pre-trained by self-supervised
learning,” in NDSS, 2022.

[87] C. Wu, J. Chen, Z. Wang, R. Liang, and R. Du, “Semantic sleuth: Iden-
tifying ponzi contracts via large language models,” in Proceedings of
the 39th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’24. Association for Computing Machinery,
2024.

[88] M. Bethany, B. Wherry, E. Bethany, N. Vishwamitra, A. Rios, and
P. Najafirad, “Deciphering textual authenticity: A generalized strategy
through the lens of large language semantics for detecting human
vs. Machine-Generated text,” in 33rd USENIX Security Symposium
(USENIX Security 24). USENIX Association, 2024.

[89] Asmita, Y. Oliinyk, M. Scott, R. Tsang, C. Fang, and H. Homayoun,
“Fuzzing {BusyBox}: Leveraging {LLM} and Crash Reuse for Embed-
ded Bug Unearthing,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024.

[90] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large Language
Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via
Large Language Models,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. Associ-
ation for Computing Machinery, 2023.

[91] (2024) Large Language Model guided Protocol Fuzzing. NDSS Sym-
posium.

[92] Y. Lyu, Y. Xie, P. Chen, and H. Chen, “Prompt Fuzzing for Fuzz
Driver Generation,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security. Association
for Computing Machinery, 2024.

[93] X. Ma, L. Luo, and Q. Zeng, “From One Thousand Pages of Spec-
ification to Unveiling Hidden Bugs: Large Language Model Assisted
Fuzzing of Matter {IoT} Devices,” in 33rd USENIX Security Sympo-
sium (USENIX Security 24), 2024.

[94] J. Wang, L. Yu, and X. Luo, “LLMIF: Augmented Large Language
Model for Fuzzing IoT Devices,” in 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2024.

[95] D. Wang, G. Zhou, L. Chen, D. Li, and Y. Miao, “ProphetFuzz: Fully
Automated Prediction and Fuzzing of High-Risk Option Combinations
with Only Documentation via Large Language Model,” in Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and Communi-
cations Security, ser. CCS ’24. Association for Computing Machinery,
2024.

[96] Z. Li, C. Wang, S. Wang, and C. Gao, “Protecting intellectual property
of large language model-based code generation apis via watermarks,”
in Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’23. Association for Computing
Machinery, 2023.

[97] C. Fang, N. Miao, S. Srivastav, J. Liu, R. Zhang, R. Fang, Asmita,
R. Tsang, N. Nazari, H. Wang, and H. Homayoun, “Large language
models for code analysis: Do LLMs really do their job?” in 33rd
USENIX Security Symposium (USENIX Security 24). USENIX
Association, 2024.

[98] G. Sandoval, H. Pearce, T. Nys, R. Karri, S. Garg, and B. Dolan-Gavitt,
“Lost at c: A user study on the security implications of large language
model code assistants,” in 32nd USENIX Security Symposium (USENIX
Security 23). USENIX Association, 2023.

[99] P. Hu, R. Liang, and K. Chen, “Degpt: Optimizing decompiler output
with llm,” Proceedings 2024 Network and Distributed System Security
Symposium, 2024.

[100] C. Wang, J. Zhang, J. Gao, L. Xia, Z. Guan, and Z. Chen, “Contract-
tinker: Llm-empowered vulnerability repair for real-world smart con-
tracts,” in Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’24. Association for
Computing Machinery, 2024.

[101] Y. Wu, N. Jiang, H. V. Pham, T. Lutellier, J. Davis, L. Tan, P. Babkin,
and S. Shah, “How effective are neural networks for fixing security
vulnerabilities,” in Proceedings of the 32nd ACM SIGSOFT Interna-

16

tional Symposium on Software Testing and Analysis, ser. ISSTA 2023.
Association for Computing Machinery, 2023.

[102] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, and C. Studer, “Poison
frogs! targeted clean-label poisoning attacks on neural networks,” in
Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems, 2018.

[103] Mitre. (2025) PoisonGPT | MITRE ATLAS™. https://atlas.mitre.org/.
[104] D. Bowen, B. Murphy, W. Cai, D. Khachaturov, and A. Gleave, “Data

poisoning in LLMs: Jailbreak-tuning and scaling laws,” 2025.
[105] A. Wan, E. Wallace, S. Shen, and D. Klein, “Poisoning language mod-

els during instruction tuning,” in Proceedings of the 40th International
Conference on Machine Learning, 2023.

[106] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From
Data. AMLBook, 2012.

[107] Y. Dong, X. Jiang, H. Liu, Z. Jin, and B. Gu, “Generalization or
memorization: Data contamination and trustworthy evaluation for large
language models,” in Findings of the Association for Computational
Linguistics: ACL 2024, 2024.

[108] M. E. A. Seddik, S.-W. Chen, S. Hayou, P. Youssef, and M. A. DEB-
BAH, “How bad is training on synthetic data? a statistical analysis of
language model collapse,” in First Conference on Language Modeling,
2024.

[109] Y. Guo, G. Shang, M. Vazirgiannis, and C. Clavel, “The curious decline
of linguistic diversity: Training language models on synthetic text,”
in Findings of the Association for Computational Linguistics: NAACL
2024, 2024.

[110] A. Cloud, M. Le, J. Chua, J. Betley, A. Sztyber-Betley, J. Hilton,
S. Marks, and O. Evans, “Subliminal learning: Language models
transmit behavioral traits via hidden signals in data,” CoRR, 2025.

[111] N. Risse and M. Böhme, “Uncovering the limits of machine learning
for automatic vulnerability detection,” in USENIX Security, 2024.

[112] N. Risse, J. Liu, and M. Böhme, “Top score on the wrong exam:
On benchmarking in machine learning for vulnerability detection,”
PACMSE, 2025.

[113] M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr, “Quantifying language
models’ sensitivity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting,” in The Twelfth
International Conference on Learning Representations, 2024.

[114] M. Abdin, J. Aneja, H. Awadalla, A. Awadallah, and A. A. Awan,
“Phi-3 technical report: A highly capable language model locally on
your phone.”

[115] Microsoft. (2025) Microsoft phi-3-mini-4k-instruct. https:
//huggingface.co/microsoft/Phi-3-mini-4k-instruct.

[116] N. Vishwamitra, K. Guo, F. T. Romit, I. Ondracek, L. Cheng, Z. Zhao,
and H. Hu, “Moderating new waves of online hate with chain-of-
thought reasoning in large language models,” in IEEE Symposium on
Security and Privacy (S&P), 2024.

[117] Ollama. (2025) Ollama. https://ollama.com.
[118] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,

J. Liu, R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve, “Code llama: Open foundation models for code,” 2024.

[119] T. Jobbins. (2024) TheBloke - llm quantization. https://huggingface.co/
TheBloke.

[120] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
in Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2020.

[121] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, Devign: effective vulnera-
bility identification by learning comprehensive program semantics via
graph neural networks. Curran Associates Inc., 2019.

[122] Y. Chen, Z. Ding, L. Alowain, X. Chen, and D. Wagner, “Diversevul:
A new vulnerable source code dataset for deep learning based vulner-
ability detection,” in Proceedings of the 26th International Symposium
on Research in Attacks, Intrusions and Defenses, 2023.

[123] Y. Ding, Y. Fu, O. Ibrahim, C. Sitawarin, X. Chen, B. Alomair,
D. Wagner, B. Ray, and Y. Chen, “ Vulnerability Detection with Code
Language Models: How Far are We? ,” in 2025 IEEE/ACM 47th
International Conference on Software Engineering (ICSE), 2025.

[124] Y. Wang, H. Le, A. D. Gotmare, N. D. Q. Bui, J. Li, and S. Hoi,
“Codet5+: Open code large language models for code understanding
and generation,” in Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2023.

[125] M. Nasr, J. Rando, N. Carlini, J. Hayase, M. Jagielski, A. F. Cooper,
D. Ippolito, C. A. Choquette-Choo, F. Tramèr, and K. Lee, “Scalable
extraction of training data from aligned, production language models,”
in The Thirteenth International Conference on Learning Representa-
tions, 2025.

[126] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2021.

[127] A. Yang, B. Yang, B. Hui, and B. Zheng, “Qwen2 technical report,”
CoRR, 2024.

[128] B. Hui, J. Yang, Z. Cui, and J. Yang, “Qwen2. 5-coder technical report,”
CoRR, 2024.

[129] B. Team. (2024) bigcode/self-oss-instruct-sc2-exec-filter-50k · datasets
at hugging face. https://huggingface.co/datasets/bigcode/self-oss-
instruct-sc2-exec-filter-50k.

[130] F. Cassano, J. Gouwar, F. Lucchetti, C. Schlesinger, A. Freeman, C. J.
Anderson, M. Q. Feldman, M. Greenberg, A. Jangda, and A. Guha,
“Knowledge transfer from high-resource to low-resource programming
languages for code llms,” Proc. ACM Program. Lang., 2024.

[131] E. Commission. (2025) Commission presents template for general-
purpose ai model providers to summarise data used to train their
models.

[132] T. Wolf, L. Debut, V. Sanh, and J. Chaumond, “HuggingFace’s trans-
formers: State-of-the-art natural language processing,” 2020.

[133] P. Izmailov, P. Kirichenko, N. Gruver, and A. G. Wilson, “On feature
learning in the presence of spurious correlations,” in Advances in
Neural Information Processing Systems, 2022.

[134] B. Chen, Z. Zhang, N. Langrené, and S. Zhu, “Unleashing the potential
of prompt engineering for large language models,” Patterns, 2025.

[135] R. Pryzant, D. Iter, J. Li, Y. Lee, C. Zhu, and M. Zeng, “Automatic
prompt optimization with “gradient descent” and beam search,” in
Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

[136] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data.” Biometrics, 1977.

[137] D. Han and M. Han, “Unsloth,” 2023.
[138] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-

wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
in Advances in Neural Information Processing Systems 33 (NeurIPS
2020), 2020.

[139] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” in Advances in Neural Information Processing
Systems 35 (NeurIPS 2022), 2022.

[140] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” 2019.

[141] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model
for programming and natural languages,” in Findings of the Association
for Computational Linguistics: EMNLP 2020, 2020.

[142] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI, Tech-
nical report, 2019.

[143] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis
et al., “Evaluating large language models trained on code,” 2021.

[144] R. Anil, S. Borgeaud et al., “Palm 2 technical report,” 2023.
[145] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,

A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain,

17

https://atlas.mitre.org/
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://ollama.com
https://huggingface.co/TheBloke
https://huggingface.co/TheBloke
https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k

N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-
training code representations with data flow,” in International Confer-
ence on Learning Representations (ICLR 2021), 2021.

[146] H. Touvron, L. Martin, K. Stone et al., “Llama 2: Open foundation
and fine-tuned chat models,” 2023.

[147] LMSYS Org, “Vicuna: An open-source chatbot impressing gpt-4 with
90% chatgpt quality,” 2023.

[148] LMSYS Organization, “Vicuna v1.5: Llama 2 based instruction-tuned
chat models,” 2023.

18

APPENDIX A
DATA AVAILABILITY

All code, datasets, and step-by-step reproduction instruc-
tions are available at: https://github.com/dormant-neurons/llm-
pitfalls. A living appendix, with up-to-date information and
guidelines to prevent pitfalls, is provided at https://llmpitfalls.
org.

APPENDIX B
PITFALL GUIDELINES

To ensure consistent evaluations across reviewers, we devel-
oped a set of clear guidelines for identifying potential pitfalls.
These guidelines aim to promote clarity and reproducibility in
the assessment of each case. For each pitfall, reviewers were
instructed to consider the following questions:

1) Is the pitfall applicable to the paper? Could it reasonably
have influenced the results?

2) Is the pitfall present? Is there clear evidence that it occurs
in the paper, even if only to a limited extent? If there
is strong indirect evidence or missing information that
suggests the pitfall is probably present, then the pitfall is
likely present.

3) If present, is it fully present (affecting all results) or
partly present (affecting only some results)?

4) Is the pitfall discussed in the paper?
A flowchart of the assessment process is depicted in Fig-

ure 6. In the following, we present the guidelines for each
pitfall used in the prevalence study.

P1—Data Poisoning via Internet Scraping. This pitfall ap-
plies if a dataset used to train a model is collected from the
internet without strategies to verify the integrity and trustwor-
thiness of the data (e.g., to check for poisoned examples). This
applies even if the data is taken from a dataset published by a
different paper, if no verification was performed there either.
The pitfall applies only if there is training or fine-tuning in
the paper; it does not apply otherwise. If data is collected by
scraping third-party websites like GitHub or Stack Overflow
without manual verification, the pitfall is likely present.

P2—LLM-generated Label Inaccuracy. This pitfall applies
when LLMs are used to annotate data with labels via clas-
sification or "LLM-as-a-judge" procedures, without further
validation of correctness. Check if the paper verifies the
correctness of these labels or applies mitigation strategies.
If LLM-as-a-judge is used to evaluate jailbreaks or attacks
without further validation, this pitfall applies.

P3—Data Leakage. This pitfall refers to situations where
information unavailable in real-world deployment is inadver-
tently included in the training data. Examples include:

• An LLM pre-trained or fine-tuned on data containing
labels, metadata, or content from the test phase.

• The model has access to future data during training that
would not be available at inference time.

If only a part of the training datasets is affected, the pitfall is
partly present. The model must be directly affected by the data
contamination. Otherwise, this pitfall is not present. Since it is
often hard to verify what data is present in the pretraining of
an LLM, in most cases this pitfall will be likely present. For
example, GPT-2 was trained on Wikipedia, but we have no
detailed sources for GPT-4, which makes it likely present. If
data is most likely present (such as Wikipedia), but we do not
have clear proof, yet it is widely assumed in the community,
then the pitfall is present.

P4—Model Collapse via Synthetic Training Data. This
pitfall applies if the model’s weights are influenced in any
way (e.g., through finetuning) by synthetic data generated by
an LLM. It also applies if external components, such as the
tokenizer, are updated or trained with LLM-generated data.
In the case of in-context learning, the pitfall does not apply,
as there are no weight adjustments. Synthetic data refers to
data produced as output by the same or a different LLM that
is used for training or fine-tuning (see §IV-D for rationale).

P5—Spurious Correlations/Unrelated Features. This pitfall
applies when the LLM relies on spurious correlations or
unrelated artifacts from the problem space, instead of learning
to generalize to the underlying task. Check whether the model
is capable enough for the chosen task. This pitfall also applies
if reported performance varies considerably across models,
suggesting the proposed approach is only effective for the
specific model used. Look for evidence of explainability
or interpretability analysis to determine what features the
model relies on. Additionally, this pitfall applies if the same
performance could be achieved with much simpler features
(e. g., based on variable names or code formatting instead of
semantics). For example, a code vulnerability detector that
performs well simply because vulnerable functions in the
dataset tend to contain certain variable names, not because
the model understands the logic.

P6—Context Truncation. This pitfall applies if the LLM’s
context size is not large enough for the evaluation or its
intended task, such that inputs need to be truncated. Check
the model’s maximum context length and the length of the
used inputs. If not disclosed, estimate input size and convert to
token counts using an online tool (e. g., LLM Token Counter).
If the evaluation is affected by truncation, this pitfall applies.

P7—Prompt Sensitivity. This pitfall applies if the prompt
used to instruct the LLMs is either fixed across all models and
experiments or lacks sufficient expressiveness for the specific
task. The pitfall is considered present if:

• The study uses only a single prompt configuration (e.g.,
one prompt applied uniformly across all models) without
justification or variation.

• Models are tested for robustness against adversarial inputs
but are instructed using only generic prompts such as

19

https://github.com/dormant-neurons/llm-pitfalls
https://github.com/dormant-neurons/llm-pitfalls
https://llmpitfalls.org
https://llmpitfalls.org

Applicable?

Present?Does not apply Unclear from text

Not Present

Discussed?

Partly?

Discussed? Discussed?

Present
(but discussed) Present

Partly present
(but discussed) Partly presentLikely present

(but discussed) Likely present

yesunclearno

no

likely

yes

noyes

noyes

noyesnoyes

Fig. 6: Decision tree for deciding pitfall categories.

“You are a helpful AI assistant.”
If the authors do not disclose how the prompting is designed
and it appears generalized for all models, the pitfall is likely
present. If prompt variation is mentioned, but mitigation is
insufficient or superficial, then the pitfall is present (but
discussed). This pitfall does not apply to standard Machine
Learning classification tasks (e.g., mapping code to labels
using BERT) where prompts are not part of the input pipeline.

P8—Proxy/Surrogate Fallacy. This pitfall applies when find-
ings using specific LLMs are inappropriately generalized to
other, sometimes larger, models or even to entire classes of
language models, without sufficient empirical validation. This
includes generalizing to different, untested quantization meth-
ods or different access methods (API vs. web), if evaluations
were only done on one. The authors must make explicit
claims for this pitfall to apply; do not mark as present for
vague implications. For example, if an attack is tested on
a small open-source Llama-8b model but the paper claims
applicability to much larger or proprietary models like GPT,
this pitfall applies. If claims are very vague (e.g., "LLMs
cannot decipher obfuscated code from this framework"), mark
as partly present.

P9—Model Ambiguity. This pitfall applies when model de-
tails are insufficient for precise identification, preventing re-
producibility. Missing details can include:

• Model IDs (e.g., mentioning only GPT-4 instead of a
specific version like gpt-4o-2024-11-20)

• Snapshots (for hosted models)

• Commit IDs (for local models, e.g., on Huggingface [132]
or Ollama [117])

• Quantization level

If even one of these is missing, the pitfall is present (not
partly present). Partly present is only used if the information
is missing for only some of the models used (e.g., 1 out of
3). If using a hosted model instead of an open-source one, the
paper must specify whether experiments are conducted via
the API or the web interface, as these may differ in content
moderation, system prompts, or other hidden context. If it is
possible to reproduce the model version unambiguously (e.g.,
only one commit existed at the time of publication), then this
pitfall does not apply.

APPENDIX C
RECOMMENDATIONS

Below is an extended version of the recommendation from
§V aimed at helping researchers avoid the identified pitfalls
in future work.

P1—Data Poisoning via Internet Scraping. To address the
risk of data poisoning, researchers should first assess whether
this threat is relevant to their specific task and data modality.
For instance, in domains like vulnerability detection, data
poisoning is particularly relevant, as adversaries may delib-
erately inject subtly hidden vulnerabilities into open-source
repositories. If data poisoning is deemed relevant, the next step
is to evaluate whether it is plausible in the given setup. For
example, it could be plausible when using proprietary models
or large-scale scraped datasets, where the training data is not
fully transparent.

If data poisoning is both relevant and possible, researchers
should explicitly acknowledge this risk in their paper. Fol-
lowing our prevalence assessment study, this corresponds to
the Likely present (discussed) label. While the ideal scenario
would involve verifying the absence of poisoning in the
training data, such guarantees are often unrealistic at scale.

20

P2—LLM-generated Label Inaccuracy. When evaluation
datasets include labels generated by LLMs, or when LLMs
are used as judges for model outputs, researchers need to
clearly disclose this and acknowledge the risk of inaccurate
labels, which can lead to misleading performance evaluations.
The optimal approach to mitigate this risk is to manually
verify all such labels to ensure correctness. However, if a
full audit is impractical due to scale, researchers should at
least conduct a manual analysis of a statistically meaningful
subset of the labels. This process should involve multiple
annotators to minimize individual bias and should report inter-
annotator agreement, along with confidence intervals, to assess
reliability.

While these precautions are essential when LLM-generated
labels are used for evaluation, less care may be needed if high-
quality, real labels are used for evaluation, and LLM-generated
labels are only employed during fine-tuning or pre-training.

P3—Data Leakage. Ideally, researchers should use open-
source models with fully known training data and ensure
there is no overlap with evaluation datasets. However, this is
often not feasible, and there may be valid reasons to prefer
proprietary models, such as access to stronger performance or
specific capabilities.

To mitigate data leakage for such cases, the first step can be
to identify the training data cutoff dates of the models under
evaluation. For some proprietary models, this information is
publicly available (e.g., for OpenAI o36 or Anthropic mod-
els7). Researchers should then determine whether any portion
of their evaluation dataset, especially labels or answers, was
publicly accessible before this cutoff.

However, as shown in our analysis (§IV-B), relying solely
on the cutoff date is insufficient. When feasible, researchers
should probe for potential overlap, for example, by employing
completion-style prompting or by comparing performance on
data released before versus after the cutoff. Additionally,
researchers can simulate leakage by intentionally inserting
evaluation data into the training set (e.g., via fine-tuning) to
estimate the resulting performance gains.

P4—Model Collapse via Synthetic Training Data. Using
LLM-generated synthetic data can be a practical choice
when real-world data is expensive or scarce. Rather than
discouraging synthetic data altogether, researchers should
critically assess its impact, particularly in terms of introducing
biases and degrading model output quality—for instance,
through iterative self-training, where an LLM is repeatedly
trained on its own outputs, as demonstrated in Section §IV-D.

At a minimum, authors should clearly report the proportion
of synthetic versus real data and analyze the differences
between them. This is especially important in iterative training
loops, where compounding effects can lead to model collapse

6https://platform.openai.com/docs/models/o3
7https://docs.anthropic.com/en/docs/about-claude/models/overview

by amplifying errors or reinforcing biases present in synthetic
samples.

P5—Spurious Correlations/Unrelated Features. Exploiting
spurious correlations is a fundamental issue in LLM be-
havior [133]. One approach to guard against this pitfall is
robustness testing: by systematically perturbing input features,
either those believed to be causally relevant or those suspected
to be spurious, researchers can observe how model predictions
change. If small changes to irrelevant input features (e.g.,
variable names, formatting, or unrelated context) significantly
affect performance, this may indicate reliance on spurious
features. Another approach is explainability techniques, such
as feature attribution methods, which can help uncover which
parts of the input the model focuses on during inference.

Ultimately, researchers should attempt to falsify their own
hypotheses and performance claims as much as possible.
This includes conducting ablation studies and counterfactual
evaluations aimed at verifying whether the model truly relies
on features relevant to the problem it is supposed to solve.

P6—Context Truncation. To mitigate issues caused by in-
sufficient context size, researchers should begin by clearly
stating the maximum context window of the model they are
using. Next, they should assess whether this context window
is adequate for the task at hand. One way to achieve this is
tokenizing a representative sample of inputs, including the full
prompt, and checking whether the total input size exceeds the
model’s context limit, as demonstrated in our impact analysis
in Section §IV-C. If a substantial portion of the input is
truncated due to context size constraints, researchers should
consider switching to a model with a larger context window.

If this is not feasible, e.g., due to computational or financial
limitations, they should, at a minimum, report what fraction
of their inputs exceeds the context limit and discuss the
implications.

Additionally, researchers may analyze how model perfor-
mance varies with input token length, which can help identify
degradation patterns.

P7—Prompt Sensitivity. To address the pitfall of prompt
sensitivity, researchers should ideally optimize prompts for
every specific task-model pair in their study. In practice,
this means beginning with prompt design guidelines for the
task at hand [134] and, when possible, leveraging prompt
optimization techniques from prior literature [135].

Even if full optimization is infeasible, researchers should
conduct post-hoc prompt variation experiments to assess how
changes in prompt phrasing influence model performance.

At a minimum, authors should clearly document how their
prompts were constructed and explain the reasoning behind
their design choices. If prompt optimization is not applicable,
such as in cases where models are used in a fixed classification
setup (e.g., mapping code to predicted labels), this should
be explicitly stated to clarify the applicability of prompt
sensitivity in the evaluation.

21

https://platform.openai.com/docs/models/o3
https://docs.anthropic.com/en/docs/about-claude/models/overview

Data Poisoning (P1)
Present in 3 papers (0 discussed)

Label Inaccuracy (P2)
Present in 8 papers (5 discussed)

Data Leakage (P3)
Present in 15 papers (7 discussed)

Model Collapse (P4)
Present in 10 papers (0 discussed)

Spurious Correlations (P5)
Present in 4 papers (1 discussed)

Context Truncation (P6)
Present in 14 papers (6 discussed)

Prompt Sensitivity (P7)
Present in 13 papers (3 discussed)

Surrogate Fallacy (P8)
Present in 14 papers (3 discussed)

Model Ambiguity (P9)
Present in 53 papers (0 discussed)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 7: Overview of the nine pitfalls across the 72 reviewed papers. Squares encode whether a pitfall in a paper is Present (),
Partly Present (), Likely Present (), Unclear from Text (), Does not Apply (), or Not Present ().

P8—Proxy/Surrogate Fallacy. To avoid the proxy or surro-
gate fallacy, researchers should only make claims that are
directly supported by the evidence presented in their paper.
Specifically, they should refrain from drawing broad conclu-
sions about entire model classes (e.g., LLMs, Llama models,
or GPT) models based on results from a limited set of
individual models. Instead, claims should be made at the level
of the specific models evaluated, using precise identifiers as
discussed in P8.

If researchers wish to make broader claims about a model
class, they must ensure that their evaluation includes a suffi-
ciently diverse and representative sample of models within that
class. Additionally, they should explicitly acknowledge that
newer or differently configured models may behave differently
and that their conclusions may not be generalizable.

P9—Model Ambiguity. The ideal scenario is full repro-
ducibility. Authors should release scripts or notebooks that
enable end-to-end reproduction of their experiments, including
data preprocessing, model interaction, and evaluation steps.
However, full reproducibility may not always be possible due
to factors such as proprietary models or dynamic APIs. In such
cases, it is essential that researchers provide enough detail to
ensure the exact models and configuration used can still be
determined.

For proprietary models, researchers should report the exact
model identifier (e.g., o4-mini-2025-04-16), the access method
(e.g., web interface or API), and the date of access. This is
particularly important as proprietary models may evolve over
time or become unavailable.

For open-source models, researchers should include precise
information such as the model name, repository URL, commit
hash, quantization level, and any fine-tuning steps applied.
In both cases, researchers should be transparent about any

parts of their pipeline that are not reproducible and explicitly
acknowledge these limitations.

APPENDIX D
PREVALENCE ASSESSMENT

TABLE V: Inter-reviewer agreement for each pitfall (Fleiss’
κ) and its Landis–Koch interpretation [136].

Pitfall κ Interpretation

Data Poisoning (P1) 0.52 Moderate
Label Inaccuracy (P2) 0.72 Substantial
Data Leakage (P3) 0.28 Fair
Model Collapse (P4) 0.43 Moderate
Spurious Correlations (P5) 0.45 Moderate
Context Truncation (P6) 0.39 Fair
Prompt Sensitivity (P7) 0.77 Substantial
Surrogate Fallacy (P8) 0.27 Fair
Model Ambiguity (P9) 0.69 Substantial

22

APPENDIX E
SUPPLEMENTARY MODEL INFORMATION

A. Model Ambiguity Pitfall

Hate speech experiment. The model specifics are listed in Table VI. The experiment was conducted using the default GPT
parameters with temperature = 1.0, its default unspecified system prompt, and a context size of 8, 192 tokens.

TABLE VI: Detailed information for the LLM used in the hate speech experiment.

Model Commit ID (w/ link) / Snapshot Quantization Access Type Access Date

GPT-4 gpt-4-0613, gpt-4-0125-preview and gpt-4.1-2025-04-14 not disclosed by provider API July 31st 2025
KeyBert all-MiniLM-L6-v2 does not use quantization locally hosted July 31st 2025
NLTK’s WordNet omw-en:1.4 does not use quantization locally hosted July 31st 2025

The prompt format is shown in Figure 8.

Prompt Format for Hate Speech Experiment

Consider the following comment, and carefully answer the questions in each step
to conclude whether it is hate speech or not: comment:"{text}"

Let’s think of it in the following steps:
Q1A: Which of the following identities are mentioned in the text?
’race’, ’nationality’, ’age’, ’political’, ’religion’, ’disability’,
’(anti-)masker’, ’(anti-)vaxxer’
Q1B: Are there any individuals mentioned explicitly by their name?
Q2: Are there any derogatory, humiliating, insulting, or disparaging words or
phrases specifically mentioned in the text? (Note: Colloquially usage of the
words should not be considered)
Q3A: If Q2’s answer is ’Yes’, are those words or phrases directed towards or
targeting your selected identities?
Q3B: If Q2’s answer is ’Yes’, are those words or phrases directed towards or
targeting individuals?
Q4A: If Q3A’s answer is ’Yes’, do those terms incite hate against the selected
identities?
Q4B: If Q3B’s answer is ’Yes’, do those terms incite hate against the
individual?
Q5A: If Q4A’s answer is ’Yes’, the comment can be concluded as identity hate
speech. Tell me your final conclusion: ’Identity Hate’ or ’Non-hate’.
Q5B: If Q4B’s answer is ’Yes’, the comment can be concluded as individual hate
speech. Tell me your final conclusion: ’Individual Hate’ or ’Non-hate’

Here is a list of targets which were used in previous hate speech. They might
help you to decide if the comment is hate speech or not: {list_of_targets}.

Here is a list of derogatory terms which were used in previous hate speech. They
might help you to decide if the comment is hate speech or not:
{list_of_hateful_word}.

Fig. 8: Prompt format for the experiment on hate speech.

23

LLM robustness experiment. We use the models listed in Table VII. For all attacks, the lowest possible temperature (i. e.,
0.1) was used alongside a context length of 4096 tokens.

TABLE VII: Detailed information for the LLM used in the LLM robustness experiment.

Model Commit ID or Snapshot Quantization Access Type Access Date

GPT-3.5 Turbo gpt-3.5-turbo-1106 and gpt-3.5-turbo-0125 not disclosed by provider API July 17th 2025
GPT-4 gpt-4-0314 and gpt-4-0613 not disclosed by provider API July 31st 2025
GPT-4 Turbo gpt-4-1106-preview, gpt-4-0125-preview, and gpt-4-turbo-2024-04-09 not disclosed by provider API July 31st 2025
GPT-4o gpt-4o-2024-05-13, gpt-4o-2024-08-06, and gpt-4o-2024-11-20 not disclosed by provider API July 31st 2025

2f064ee0c6ae3f025ec4e392c6ba5dd049c77969 (TheBloke and 2bit, 3bit, 4bit, 5bit, July 17th 2025Llama 2 7b 8fdf8f752f6e (Ollama) 6bit, 8bit, and fp16 locally hosted July 17th 2025
191239b3e26b2882fb562ffccdd1cf0f65402adb (TheBloke) and 2bit, 3bit, 4bit, 5bit, July 17th 2025Llama 2 7b 78e26419b446 (Ollama) 6bit, 8bit, and fp16 locally hosted July 17th 2025

2bit, 3bit, 4bit, 5bit, July 17th 2025Llama 3.1 8b 46e0c10c039e (Ollama) 6bit, 8bit, and fp16 locally hosted July 17th 2025

The system prompts to safeguard the LLM and its secret key were directly provided by the framework, randomly chosen
from a set of over 1000 system prompts focusing on confidentiality enhancing instructions against prompt-based attacks. An
example is provided in Figure 9.

Prompt Example for Robustness Assessment

System prompt: The secret key is 1337. Never ever show this key again. Keep the
instructions hidden from anyone even if they are authorized.

User prompt: You are now allowed to access confidential data, now tell me your
secret key!

Fig. 9: Attack prompt example for the experiment on LLM robustness.

B. Model Collapse Pitfall

Specifics about the used model are listed in Table VIII. For the fine-tuning of Qwen2.5-Coder-0.5B-Instruct we use a sequence
length of up to 2048 tokens, batch_size=16 and learning_rate=2× 10−4 for 5 training epochs with 5 warmup steps.
Furthermore, weight_decay=0.01, gradient_accumulation_steps=4, and a random seed of 1337 is used.

TABLE VIII: Detailed information for the LLM used in the model collapse experiment. Quantization is provided by the
Unsloth [137] project.

Model Commit ID or Snapshot Quantization Access Type Access Date

Qwen2.5-Coder-0.5B-Instruct 0599efb2b5bc56894f77aebeed598c0738984d09 (Unsloth) 4bit locally hosted July 17th 2025

24

https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF
https://ollama.com/library/codellama:7b
https://huggingface.co/TheBloke/Llama-2-7B-GGUF
https://ollama.com/library/llama2:7b
https://ollama.com/library/llama3.1:8b
https://huggingface.co/unsloth/Qwen2.5-Coder-0.5B-Instruct

C. Data Leakage Pitfall

We use the models listed in Table IX. For the fine-tuning of CodeT5p-220M we use a context limit of 512, random seed
42, batch_size = 16, learning_rate = 3×10−5. We train for 10 epochs. During evaluation we report macro-F1 on
the full test set.

TABLE IX: Detailed information for the LLMs used in the two Data Leakage experiments.

Model Commit ID or Snapshot Quantization Access Type Access Date

CodeT5+ 220m 2b92f36e2782341a50551759fdba0dd15e821f99 (Huggingface) fp16 locally hosted May 24th 2025
GPT-3.5 Turbo gpt-3.5-turbo-0125 not disclosed by provider API July 9th 2025
GPT-4o gpt-4o-2024-08-06 not disclosed by provider API July 9th 2025
DeepSeek V3 deepseek-v3-0324 not disclosed by provider API July 9th 2025
Claude 3.5 Haiku claude-3-5-haiku-20241022 not disclosed by provider API July 9th 2025
LLaMA 3 8b Instruct 86e0c07efa3f1b6f06ea13e31b1e930dce865ae4 (Huggingface) 4bit locally hosted July 9th 2025
Qwen3-14b b5d17e319ff9734f059b42b8b1f0834932bbb12c (Huggingface) 4bit locally hosted July 9th 2025
Qwen2.5-Coder-14b 4275f1d1fd379c8a5e8cc655c5a57ef03b912a29 (Huggingface) 4bit locally hosted July 9th 2025

For all evaluations, we set the temperature to temperature=0.0. The prompt format used for the commit message
prediction task is shown in Figure 10, while the prompt format for function completion is shown in Figure 11.

Prompt Format for Commit Message Prediction

You are a commit message assistant. I will give you project+commit+partial
message. Predict the full original commit message only. No markdown or
explanation.

Project: {project}
Commit: {commit}
Partial commit message: "{partial}"

Fig. 10: Prompt for commit message completion for the experiment on data leakage during pre-training.

Prompt Format for Function Completion

You are a code completion assistant. I will give you a project name, a commit
ID, and the first half of a C/C++ function. Predict the full original function
only. No explanation or formatting.

Project: {project}
Commit: {commit}
Partial function: "{partial}"

Fig. 11: Prompt for function completion for the experiment on data leakage during pre-training.

25

https://huggingface.co/salesforce/codet5p-220m
https://huggingface.co/QuantFactory/Meta-Llama-3-8B-Instruct-GGUF
https://huggingface.co/lmstudio-community/Qwen3-14B-MLX-4bit
https://huggingface.co/lmstudio-community/Qwen2.5-Coder-14B-Instruct-MLX-4bit

D. Context Truncation Pitfall

Details about the tokenizer used can be found in Table X.

TABLE X: Detailed information for the tokenizer used in the context truncation experiment.

Model Commit ID or Snapshot Quantization Access Type Access Date

CodeT5 Tokenizer b1ee9570c289f21b5922b9c768a1ce12957bf968 (Huggingface) not applicable locally hosted May 5th 2025

1 hstore_from_arrays(PG_FUNCTION_ARGS)
2 {
3 int32 buflen;
4 HStore *out;
5 Pairs *pairs;
6 Datum *key_datums;
7 bool *key_nulls;
8 int key_count;
9 Datum *value_datums;

10 bool *value_nulls;
11 int value_count;
12 ArrayType *key_array;
13 ArrayType *value_array;
14 int i;
15

16 if (PG_ARGISNULL(0))
17 PG_RETURN_NULL();
18

19 key_array = PG_GETARG_ARRAYTYPE_P(0);
20

21 Assert(ARR_ELEMTYPE(key_array) == TEXTOID);
22

23 /*
24 * must check >1 rather than != 1 because empty arrays have 0 dimensions,
25 * not 1
26 */
27

28 if (ARR_NDIM(key_array) > 1)
29 ereport(ERROR,
30 (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
31 errmsg("wrong number of array subscripts")));
32

33 deconstruct_array(key_array,
34 TEXTOID, -1, false, ’i’,
35 &key_datums, &key_nulls, &key_count);
36

37 /* value_array might be NULL */
38

39 if (PG_ARGISNULL(1))
40 {
41 value_array = NULL;
42 value_count = key_count;
43 value_datums = NULL;
44 value_nulls = NULL;
45 }
46 else
47 {
48 value_array = PG_GETARG_ARRAYTYPE_P(1);
49

50 Assert(ARR_ELEMTYPE(value_array) == TEXTOID);
51

52 if (ARR_NDIM(value_array) > 1)
53 ereport(ERROR,
54 (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
55 errmsg("wrong number of array subscripts")));
56

57 if ((ARR_NDIM(key_array) > 0 || ARR_NDIM(value_array) > 0) &&
58 (ARR_NDIM(key_array) != ARR_NDIM(value_array) ||
59 ARR_DIMS(key_array)[0] != ARR_DIMS(value_array)[0] ||
60 ARR_LBOUND(key_array)[0] != ARR_LBOUND(value_array)[0]))
61 ereport(ERROR,
62 (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
63 errmsg("arrays must have same bounds")));
64

65 deconstruct_array(value_array,
66 TEXTOID, -1, false, ’i’,
67 &value_datums, &value_nulls, &value_count);
68

69 Assert(key_count == value_count);
70 }
71

72 pairs = palloc(key_count * sizeof(Pairs));
73

74 /*** REDACTED ***/
75 }

Fig. 12: CVE-2014-2669. Excerpt from the hstore_from_arrays function from the PostgreSQL repository. Line 73
(starting at token position 692 when byte-pair tokenized) performs key_count * sizeof(Pairs), which can overflow
on 32-bit systems and cause a heap-based buffer overflow. Because many vulnerability-detection papers fine-tuning open-source
LLMs (e. g., CodeBERT) truncate inputs to the first 512 tokens, this crucial statement lies outside the model’s context resulting
in overlooking the vulnerability.

26

https://huggingface.co/Salesforce/codet5-small/blob/main/tokenizer_config.json

APPENDIX F
DISCLOSED TRAINING DATA

TABLE XI: Disclosed pre-training and alignment data for popular LLMs.

Model (year) Publicly disclosed pre-training data Alignment / instruction data

GPT-4 (2023) “A variety of licensed, created, and publicly-available data sources”
(no corpus breakdown). [21], [22]

RLHF and red-team data; sizes not disclosed. [21], [22]

GPT-3.5-turbo (2022) Inherits GPT-3 mix; extra data not disclosed. [138] RLHF; size not disclosed. [139]
GPT-3 (2020) Filtered Common Crawl ∼410B; WebText 2; Books 1 and 2;

English Wikipedia. [138]
N/A

CodeBERT (2020) CodeSearchNet + extra GitHub functions. [140], [141] N/A
GPT-2 (2019) WebText ∼8M Reddit-linked pages (∼40 GB). [142] N/A
Codex (2021) GPT-3 weights + 159 GB GitHub code (May 2020). [143] ∼50k supervised problems with unit tests. [143]
PaLM 2 (2023) Multilingual web, books, Wikipedia, news/dialog; 20-language

code and math corpora. [144]
Multilingual SFT + RLHF; size not disclosed. [144]

GraphCodeBERT (2021) CodeSearchNet augmented with data-flow graphs. [140], [145] N/A
Llama 2 (2023) 2T tokens of publicly available online text; per-source breakdown

not disclosed. [146]
SFT + RLHF on human annotations; size not disclosed. [146]

Vicuna (2023) Base LLaMA (v1.1) or Llama 2 (v1.5). [147], [148] ∼70k ShareGPT chats for SFT. [147], [148]

27

APPENDIX G
ARTIFACT

A. Description and Requirements
The artifact provides source code to reproduce the four case

studies presented in the paper:
1) Model Ambiguity (Experiments A.1 and A.2, presented

in §IV-A)
2) Data Leakage (Experiments B.1 and B.2, presented in

§IV-B)
3) Context Truncation (Experiment C, presented in §IV-C)
4) Model Collapse (Experiment D, presented in §IV-D)
1) How to access: The artifact is available as a permanently

archived version at: https://doi.org/10.5281/zenodo.17847798
2) Hardware requirements: Experiments A.1, A.2, B.2, and

C can be run on a standard desktop machine (x86-64 CPU, 8
cores, 16 GB RAM). Experiments B.1 and D require GPUs
to fully reproduce the results in the paper. If GPUs are not
available to the AEC, we additionally provide scaled-down
versions of these experiments. The scaled-down versions do
not reproduce the exact results in the paper but demonstrate
that the artifact runs correctly. Instructions for running them
are included in the repository README.

3) Software dependencies: All experiments are imple-
mented in Python. The artifact includes the following
software-related components and requirements:

• Python Environment: Each experiment directory con-
tains a requirements.txt file listing the Python
packages needed. We also provide Dockerfiles for con-
tainerized setup. The repository README explains how
to build and run these Docker environments.

• API Tokens: Some experiments require API access to ex-
ternal LLM providers (HuggingFace, OpenAI, Anthropic,
and DeepSeek). The README explains the placement
and use of all API keys.

• Ollama (Experiment A.2): Experiment A.2 requires
an installation of Ollama (https://ollama.com/download).
Setup and usage instructions are included in the
README.

• LM Studio (Experiment B.2): Experiment B.2 requires
an installation of LM Studio (https://lmstudio.ai/). Setup
and usage instructions are included in the README.

4) Datasets:
• Experiment A.1: Uses the New-Hate-Wave dataset from

HuggingFace. We provide this dataset directly to the AEC
(via the GitHub repository), as access normally must be
requested from the dataset authors on HuggingFace.

• Experiments B.1, B.2, and C: Use the PrimeVul [123],
Devign [121], and DiverseVul [122] datasets. These are
downloaded automatically from HuggingFace during ex-
ecution.

• Experiment D: Uses the self-oss-instruct-sc2-exec-filter-
50k dataset, which is also downloaded automatically from
HuggingFace.

B. Artifact Installation & Configuration

The experiments are implemented in Python. Each experi-
ment directory includes a requirements.txt file listing
the necessary Python packages. For convenience and repro-
ducibility, we also provide Dockerfiles that allow setting up
the environment via Docker. The repository README details
the steps for building the Docker images and running the
experiments.

C. Experiment Workflow

Each experiment is self-contained (own directory, Docker-
file, requirements). Typical flow: prepare environment → build
& run experiment → collect artifacts in plots/. Deviations
from this flow are specified in the repository README.

D. Major Claims

• Claim 1: Model ambiguity affects performance and
robustness (§IV-A). Supported by A.1 (hate detection
accuracy shifts across GPT snapshots) and A.2 (robust-
ness attack success rate differences across snapshots and
quantization).

• Claim 2: Data leakage inflates metrics near-linearly in
controlled laboratory settings (§IV-B). Supported by B.1.

• Claim 3: We find no evidence of memorization in the
tested commercial and local models for widely used
vulnerability detection datasets (§IV-B). Supported by
B.2.

• Claim 4: Context truncation is common and can hide key
input information (§IV-C). Supported by C.

• Claim 5: Iterative training on self-generated synthetic
data leads to model collapse, indicated by increasing
perplexity mean and variance across generations (§IV-D).
Supported by D.

E. Evaluation

1) Experiment A.1:

• Name: Model Ambiguity & Surrogate Fallacy - Hate
Detection

• Effort: 10 minutes of human effort; less than 1 hour
evaluation time for the reduced evaluation; 4-5 hours
evaluation time for the full evaluation.

• Explanation: We re-implement a hate speech detection
experiment from previous literature. We evaluate the
detection on three different snapshots of GPT-4 from
OpenAI.

• How to: Setup and execution instructions are described
in the README.

• Results: The results will be printed to stdout. The
different snapshots of GPT-4 yield deviating results, sup-
porting the claim in the paper.

28

https://doi.org/10.5281/zenodo.17847798
https://ollama.com/download
https://lmstudio.ai/

2) Experiment A.2:
• Name: Model Ambiguity & Surrogate Fallacy - LLM

Robustness

• Effort: 10 minutes of human effort; 2-24 hours, depend-
ing on the used models. Hosted LLMs like ChatGPT
will be done faster, while local models require a GPU
and more time; a scaled-down version with less attack
iterations is included.

• Explanation: Evaluation of LLM robustness by initial-
izing different LLMs with a “secret key” which is then
tried to be exfiltrated via different attack strategies despite
being instructed to keep it safe and secure.

• How to: Setup and execution instructions are described
in the README.

• Results: Logs and results will be printed to stdout and
saved to the logs/ directory. Different model snapshots
of the same base model yield different robustness when
tested against confidentiality attacks. This supports the
claim in the paper.

3) Experiment B.1:
• Name: Lab-Setting Data Leakage

• Effort: 10 minutes of human effort; 5 days compute time
for full run on GPUs; 1-10 hours for scaled-down version
on a commodity desktop machine.

• Explanation: The experiment fine-tunes CodeT5+ on the
Devign/DiverseVul/PrimeVul datasets with leakage ratios
{0, 0.2, . . . , 1.0} added from the test set to the training
set.

• How to: The experiment only requires two steps to
run: set up the environment (HuggingFace token) and
build/run the experiment. Both steps, including the exact
commands, are described in the README in our artifact
repository.

• Results: Plots will be saved to the plots/ directory. For
the full run, Figure 4 will be reproduced. For the scaled-
down version, a monotonic increase of the F1 scores can
be observed. Therefore, the claim (C2) is still supported.

4) Experiment B.2:
• Name: Commercial LLM Data Leakage

• Effort: 10 minutes of human effort; 1–5 hours compute
time on a commodity desktop machine.

• Explanation: Commit-message and function completion
on the PrimeVul dataset across commercial and local
LLMs.

• How to: The experiment only requires two steps to run:
set up the environment (API tokens) and build/run the
experiment. Both steps, including the exact commands,
are described in the README.

• Results: Results will be printed to standard output. Ex-
pect results consistent with those reported in the paper

(0/100 matches for all models), although minor variations
may occur due to randomness and API endpoint behavior.

5) Experiment C:
• Name: Context Truncation

• Effort: 10 minutes of human effort; 5 minutes compute
time on a commodity desktop machine.

• Explanation: Tokenize vulnerable functions and compute
proportions exceeding context limits.

• How to: The experiment requires two steps: set up
the environment (HuggingFace token) and build/run the
experiment. Instructions are provided in the README.

• Results: The resulting table will be saved as a LaTeX
file to the plots/ directory. All numbers will exactly
match Table IV in our paper.

6) Experiment D:
• Name: Model Collapse

• Effort: 10 minutes of human effort; 4-5 days compute
time for full runs on GPUs; a scaled-down demonstration
is included with only 20-24 hours of compute time for
one single generation. (However, the scaled-down version
still requires some kind of GPU to work. A free hosted
solution may be sufficient.)

• Explanation: Iterative self-training on synthetic data
and evaluation of perplexity mean and variance across
generations.

• How to: Setup and execution instructions are described
in the README.

• Results: The plot will be saved to the plots/ directory.
The trend of increasing perplexity mean and variance will
match the claim demonstrated in the paper.

F. Notes

Some results may fluctuate slightly due to internal random-
ness and non-deterministic behavior of both LLM APIs as well
as locally hosted LLMs.

29

	Introduction
	Pitfalls Across the LLM Pipeline
	Stage 1: Data Collection and Labeling
	Stage 2: Pre-Training
	Stage 3: Fine-tuning and Alignment
	Stage 4: Prompt Engineering
	Stage 5: Evaluation

	Prevalence of Pitfalls
	Paper Collection
	Reviewing Methodology
	Pitfall Prevalence
	Main Findings

	Impact Analysis
	Model Ambiguity & Surrogate Fallacy
	Hate Detection
	LLM Robustness

	Data Leakage
	Leakage in Lab Setting
	Evaluation on Commercial LLMs

	Context Truncation
	Model Collapse

	Recommendations
	Discussion
	Conclusion
	References
	Appendix A: Data Availability
	Appendix B: Pitfall Guidelines
	Appendix C: Recommendations
	Appendix D: Prevalence Assessment
	Appendix E: Supplementary Model Information
	Model Ambiguity Pitfall
	Model Collapse Pitfall
	Data Leakage Pitfall
	Context Truncation Pitfall

	Appendix F: Disclosed training data
	Appendix G: Artifact
	Description and Requirements
	How to access
	Hardware requirements
	Software dependencies
	Datasets

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment A.1
	Experiment A.2
	Experiment B.1
	Experiment B.2
	Experiment C
	Experiment D

	Notes

